Genetics of Cutaneous T Cell Lymphoma: From Bench to Bedside
- 1.2k Downloads
- 4 Citations
Opinion statement
Cutaneous T cell lymphomas (CTCLs) are non-Hodgkin lymphomas of skin homing T cells. Although early-stage disease may be limited to the skin, tumor cells in later stage disease can populate the blood, the lymph nodes, and the visceral organs. Unfortunately, there are few molecular biomarkers to guide diagnosis, staging, or treatment of CTCL. Diagnosis of CTCL can be challenging and requires the synthesis of clinical findings, histopathology, and T cell clonality studies; however, none of these tests are entirely sensitive or specific for CTCL. Treatment of CTCL is often empiric and is not typically based on specific molecular alterations, as is common in other cancers. In part, limitations in diagnosis and treatment selection reflect the limited insight into the genetic basis of CTCL. Recent next-generation sequencing has revolutionized our understanding of the mutational landscape in this disease. These analyses have uncovered ultraviolet radiation and recombination activating gene (RAG) endonucleases as important mutagens. Furthermore, these studies have revealed potentially targetable oncogenic mutations in the T cell receptor complex, NF-κB, and JAK-STAT signaling pathways. Collectively, these somatic mutations drive lymphomagenesis via cancer-promoting changes in proliferation, apoptosis, and T cell effector function. We expect that these genetic findings will launch a new era of precision medicine in CTCL.
Keywords
Cutaneous T cell lymphoma CTCL Mycosis fungoides Next-generation sequencing JAK-STAT NF-κB Bortezomib Tofacitinib RuxolitinibNotes
Compliance with Ethical Standards
Conflict of Interest
William E. Damsky and Jaehyuk Choi declare that they have no conflict of interest.
Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.
References and Recommended Reading
Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance
- 1.Girardi M, Heald PW, Wilson LD. The pathogenesis of mycosis fungoides. The New England journal of medicine. 2004;350(19):1978–88. doi: 10.1056/NEJMra032810.CrossRefPubMedGoogle Scholar
- 2.••Choi J, Goh G, Walradt T, Hong BS, Bunick CG, Chen K, et al. Genomic landscape of cutaneous T cell lymphoma. Nature genetics. 2015;47(9):1011–9. doi: 10.1038/ng.3356. Exome analysis of 40 late stage mycosis fungoides specimens identifying recurrent pathogenic mutations in 17 genes. These mutations include ZEB1, FAS, NFKB2, and STAT5B, among others. Also identifies that the majority of pathogenic mutations in MF are SCNVs (specifically focal deletions) and that a there is a high prevalence of UV signature mutations in MF.CrossRefPubMedPubMedCentralGoogle Scholar
- 3.••Ungewickell A, Bhaduri A, Rios E, Reuter J, Lee CS, Mah A, et al. Genomic analysis of mycosis fungoides and Sezary syndrome identifies recurrent alterations in TNFR2. Nature genetics. 2015;47(9):1056–60. doi: 10.1038/ng.3370. Exome analysis of 11 MF/SS specimens that identified and characterized the effect of recurrent mutations in tumor necrosis factor receptor TNFR2 (TNFRSF1B gene) as a mechanism by which NF-κB signaling is activated in CTCL. Also show that TNFRS1B mutant CTCLs are sensitive to NF-κB blockade with the proteasome inhibitor bortezomib.CrossRefPubMedGoogle Scholar
- 4.••da Silva Almeida AC, Abate F, Khiabanian H, Martinez-Escala E, Guitart J, Tensen CP, et al. The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome. Nature genetics. 2015;47(12):1465–70. doi: 10.1038/ng.3442. Exome analysis of 25 SS, 8 MF, and 9 other CTCL variants that identified recurrent mutations in NF-κB, JAK-STAT, and T cell receptor pathways. Specifically identifies JAK3 and STAT3 mutations in CTCL and show that these mutations are targetable using JAK-STAT pathway inhibitors tofacitinib and ruxolitinib.CrossRefPubMedPubMedCentralGoogle Scholar
- 5.••Wang L, Ni X, Covington KR, Yang BY, Shiu J, Zhang X, et al. Genomic profiling of Sezary syndrome identifies alterations of key T cell signaling and differentiation genes. Nature genetics. 2015;47(12):1426–34. doi: 10.1038/ng.3444. Exome analysis of 37 SS samples identified recurrently mutated components of T cell signaling such as CARD11 and PDCD1 (PD-1) which result in constitutive TCR pathway activation. Also identified recurrent mutations involved in TH2 functional polarization (ZEB1) and skin homing (CCR4).CrossRefPubMedPubMedCentralGoogle Scholar
- 6.•McGirt LY, Jia P, Baerenwald DA, Duszynski RJ, Dahlman KB, Zic JA, et al. Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood. 2015;126(4):508–19. doi: 10.1182/blood-2014-11-611194. Exome analysis of 5 tumor stage MF samples identified JAK3 mutations. Show that JAK3 mutant cells are sensitive to JAK-STAT pathway inhibition.CrossRefPubMedGoogle Scholar
- 7.Pimpinelli N, Olsen EA, Santucci M, Vonderheid E, Haeffner AC, Stevens S, et al. Defining early mycosis fungoides. Journal of the American Academy of Dermatology. 2005;53(6):1053–63. doi: 10.1016/j.jaad.2005.08.057.CrossRefPubMedGoogle Scholar
- 8.Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105(10):3768–85. doi: 10.1182/blood-2004-09-3502.CrossRefPubMedGoogle Scholar
- 9.Agar NS, Wedgeworth E, Crichton S, Mitchell TJ, Cox M, Ferreira S, et al. Survival outcomes and prognostic factors in mycosis fungoides/sezary syndrome: validation of the revised international society for Cutaneous Lymphomas/European Organisation for research and treatment of cancer staging proposal. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2010;28(31):4730–9. doi: 10.1200/JCO.2009.27.7665.CrossRefGoogle Scholar
- 10.Watanabe R, Gehad A, Yang C, Scott LL, Teague JE, Schlapbach C, et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Science translational medicine. 2015;7(279):279ra39. doi: 10.1126/scitranslmed.3010302.CrossRefPubMedPubMedCentralGoogle Scholar
- 11.Clark RA, Watanabe R, Teague JE, Schlapbach C, Tawa MC, Adams N, et al. Skin effector memory T cells do not recirculate and provide immune protection in alemtuzumab-treated CTCL patients. Science translational medicine. 2012;4(117):117ra7. doi: 10.1126/scitranslmed.3003008.CrossRefPubMedPubMedCentralGoogle Scholar
- 12.Campbell JJ, Clark RA, Watanabe R, Kupper TS. Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood. 2010;116(5):767–71. doi: 10.1182/blood-2009-11-251926.CrossRefPubMedPubMedCentralGoogle Scholar
- 13.Zhu J, Koelle DM, Cao J, Vazquez J, Huang ML, Hladik F, et al. Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. The Journal of experimental medicine. 2007;204(3):595–603. doi: 10.1084/jem.20061792.CrossRefPubMedPubMedCentralGoogle Scholar
- 14.Zhu J, Peng T, Johnston C, Phasouk K, Kask AS, Klock A, et al. Immune surveillance by CD8alphaalpha + skin-resident T cells in human herpes virus infection. Nature. 2013;497(7450):494–7. doi: 10.1038/nature12110.CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Guitart J, Kennedy J, Ronan S, Chmiel JS, Hsiegh YC, Variakojis D. Histologic criteria for the diagnosis of mycosis fungoides: proposal for a grading system to standardize pathology reporting. Journal of cutaneous pathology. 2001;28(4):174–83.CrossRefPubMedGoogle Scholar
- 16.Smoller BR, Bishop K, Glusac E, Kim YH, Hendrickson M. Reassessment of histologic parameters in the diagnosis of mycosis fungoides. The American journal of surgical pathology. 1995;19(12):1423–30.CrossRefPubMedGoogle Scholar
- 17.Sanchez JL, Ackerman AB. The patch stage of mycosis fungoides. Criteria for histologic diagnosis. The American Journal of dermatopathology. 1979;1(1):5–26.CrossRefPubMedGoogle Scholar
- 18.van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 concerted action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–317. doi: 10.1038/sj.leu.2403202.CrossRefPubMedGoogle Scholar
- 19.Ponti R, Fierro MT, Quaglino P, Lisa B, Paola F, Michela O, et al. TCRgamma-chain gene rearrangement by PCR-based GeneScan: diagnostic accuracy improvement and clonal heterogeneity analysis in multiple cutaneous T-cell lymphoma samples. The Journal of investigative dermatology. 2008;128(4):1030–8. doi: 10.1038/sj.jid.5701109.CrossRefPubMedGoogle Scholar
- 20.Weed J, Girardi M. The difficult--and often delayed--diagnosis of CTCL. Science translational medicine. 2015;7(308):308fs41. doi: 10.1126/scitranslmed.aad2518.CrossRefPubMedGoogle Scholar
- 21.Schiller PI, Flaig MJ, Puchta U, Kind P, Sander CA. Detection of clonal T cells in lichen planus. Archives of dermatological research. 2000;292(11):568–9.CrossRefPubMedGoogle Scholar
- 22.Dereure O, Levi E, Kadin ME. T-Cell clonality in pityriasis lichenoides et varioliformis acuta: a heteroduplex analysis of 20 cases. Archives of dermatology. 2000;136(12):1483–6.CrossRefPubMedGoogle Scholar
- 23.Lukowsky A, Muche JM, Sterry W, Audring H. Detection of expanded T cell clones in skin biopsy samples of patients with lichen sclerosus et atrophicus by T cell receptor-gamma polymerase chain reaction assays. The Journal of investigative dermatology. 2000;115(2):254–9. doi: 10.1046/j.1523-1747.2000.00040.x.CrossRefPubMedGoogle Scholar
- 24.Duvic M, Vu J. Update on the treatment of cutaneous T-cell lymphoma (CTCL): focus on vorinostat. Biologics. 2007;1(4):377–92.PubMedPubMedCentralGoogle Scholar
- 25.Dereure O, Levi E, Vonderheid EC, Kadin ME. Infrequent Fas mutations but no Bax or p53 mutations in early mycosis fungoides: a possible mechanism for the accumulation of malignant T lymphocytes in the skin. The Journal of investigative dermatology. 2002;118(6):949–56. doi: 10.1046/j.1523-1747.2002.01794.x.CrossRefPubMedGoogle Scholar
- 26.van Doorn R, Dijkman R, Vermeer MH, Starink TM, Willemze R, Tensen CP. A novel splice variant of the Fas gene in patients with cutaneous T-cell lymphoma. Cancer research. 2002;62(19):5389–92.PubMedGoogle Scholar
- 27.Contassot E, Kerl K, Roques S, Shane R, Gaide O, Dupuis M, et al. Resistance to FasL and tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in Sezary syndrome T-cells associated with impaired death receptor and FLICE-inhibitory protein expression. Blood. 2008;111(9):4780–7. doi: 10.1182/blood-2007-08-109074.CrossRefPubMedGoogle Scholar
- 28.Kim EJ, Hess S, Richardson SK, Newton S, Showe LC, Benoit BM, et al. Immunopathogenesis and therapy of cutaneous T cell lymphoma. The Journal of clinical investigation. 2005;115(4):798–812. doi: 10.1172/JCI24826.CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Heald P, Yan SL, Edelson R. Profound deficiency in normal circulating T cells in erythrodermic cutaneous T-cell lymphoma. Archives of dermatology. 1994;130(2):198–203.CrossRefPubMedGoogle Scholar
- 30.Levy S, Tempe JL, Caussade P, Aleksijevic A, Grosshans E, Mayer S, et al. Stage-related decrease in natural killer cell activity in untreated patients with mycosis fungoides. Cancer Immunol Immunother. 1984;18(2):138–40.CrossRefPubMedGoogle Scholar
- 31.Laroche L, Kaiserlian D. Decreased natural-killer-cell activity in cutaneous T-cell lymphomas. The New England journal of medicine. 1983;308(2):101–2. doi: 10.1056/NEJM198301133080213.PubMedGoogle Scholar
- 32.Saed G, Fivenson DP, Naidu Y, Nickoloff BJ. Mycosis fungoides exhibits a Th1-type cell-mediated cytokine profile whereas Sezary syndrome expresses a Th2-type profile. The Journal of investigative dermatology. 1994;103(1):29–33.CrossRefPubMedGoogle Scholar
- 33.Bagot M, Nikolova M, Schirm-Chabanette F, Wechsler J, Boumsell L, Bensussan A. Crosstalk between tumor T lymphocytes and reactive T lymphocytes in cutaneous T cell lymphomas. Annals of the New York Academy of Sciences. 2001;941:31–8.CrossRefPubMedGoogle Scholar
- 34.Zhang Q, Wang HY, Wei F, Liu X, Paterson JC, Roy D, et al. Cutaneous T cell lymphoma expresses immunosuppressive CD80 (B7-1) cell surface protein in a STAT5-dependent manner. Journal of immunology. 2014;192(6):2913–9. doi: 10.4049/jimmunol.1302951.CrossRefGoogle Scholar
- 35.Axelrod PI, Lorber B, Vonderheid EC. Infections complicating mycosis fungoides and Sezary syndrome. JAMA. 1992;267(10):1354–8.CrossRefPubMedGoogle Scholar
- 36.Goh G, Walradt T, Markarov V, Blom A, Riaz N, Doumani R, et al. Mutational landscape of MCPyV-positive and MCPyV-negative merkel cell carcinomas with implications for immunotherapy. Oncotarget. 2015. doi: 10.18632/oncotarget.6494.Google Scholar
- 37.Cancer Genome Atlas N. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. doi: 10.1016/j.cell.2015.05.044.CrossRefGoogle Scholar
- 38.Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. doi: 10.1038/nature11412.CrossRefGoogle Scholar
- 39.Natarajan VT, Ganju P, Ramkumar A, Grover R, Gokhale RS. Multifaceted pathways protect human skin from UV radiation. Nat Chem Biol. 2014;10(7):542–51. doi: 10.1038/nchembio.1548.CrossRefPubMedGoogle Scholar
- 40.Gaide O, Emerson RO, Jiang X, Gulati N, Nizza S, Desmarais C, et al. Common clonal origin of central and resident memory T cells following skin immunization. Nature medicine. 2015;21(6):647–53. doi: 10.1038/nm.3860.CrossRefPubMedPubMedCentralGoogle Scholar
- 41.Roth DB. V(D)J recombination: mechanism, errors, and fidelity. Microbiol Spectr. 2014;2(6). doi: 10.1128/microbiolspec.MDNA3-0041-2014
- 42.Marculescu R, Le T, Simon P, Jaeger U, Nadel B. V(D)J-mediated translocations in lymphoid neoplasms: a functional assessment of genomic instability by cryptic sites. The Journal of experimental medicine. 2002;195(1):85–98.CrossRefPubMedPubMedCentralGoogle Scholar
- 43.Mendes RD, Sarmento LM, Cante-Barrett K, Zuurbier L, Buijs-Gladdines JG, Povoa V, et al. PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events. Blood. 2014;124(4):567–78. doi: 10.1182/blood-2014-03-562751.CrossRefPubMedGoogle Scholar
- 44.Teng G, Schatz DG. Regulation and Evolution of the RAG Recombinase. Adv Immunol. 2015;128:1–39. doi: 10.1016/bs.ai.2015.07.002.CrossRefPubMedGoogle Scholar
- 45.Leibowitz ML, Zhang CZ, Pellman D. Chromothripsis: a new mechanism for rapid karyotype evolution. Annual review of genetics. 2015;49:183–211. doi: 10.1146/annurev-genet-120213-092228.CrossRefPubMedGoogle Scholar
- 46.Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, et al. Pan-cancer patterns of somatic copy number alteration. Nature genetics. 2013;45(10):1134–40. doi: 10.1038/ng.2760.CrossRefPubMedPubMedCentralGoogle Scholar
- 47.Liehr T, Othman MA, Rittscher K, Alhourani E. The current state of molecular cytogenetics in cancer diagnosis. Expert review of molecular diagnostics. 2015;15(4):517–26. doi: 10.1586/14737159.2015.1013032.CrossRefPubMedGoogle Scholar
- 48.Gerami P, Scolyer RA, Xu X, Elder DE, Abraham RM, Fullen D, et al. Risk assessment for atypical spitzoid melanocytic neoplasms using FISH to identify chromosomal copy number aberrations. The American journal of surgical pathology. 2013;37(5):676–84. doi: 10.1097/PAS.0b013e3182753de6.CrossRefPubMedGoogle Scholar
- 49.Shahbain H, Cooper C, Gerami P. Molecular diagnostics for ambiguous melanocytic tumors. Seminars in cutaneous medicine and surgery. 2012;31(4):274–8. doi: 10.1016/j.sder.2012.09.001.CrossRefPubMedGoogle Scholar
- 50.Gammon B, Gerami P. Fluorescence in situ hybridization for ambiguous melanocytic tumors. Histology and histopathology. 2012;27(12):1539–42.PubMedGoogle Scholar
- 51.Gerami P, Li G, Pouryazdanparast P, Blondin B, Beilfuss B, Slenk C, et al. A highly specific and discriminatory FISH assay for distinguishing between benign and malignant melanocytic neoplasms. The American journal of surgical pathology. 2012;36(6):808–17. doi: 10.1097/PAS.0b013e31824b1efd.CrossRefPubMedGoogle Scholar
- 52.Romo-Tena J, Gomez-Martin D, Alcocer-Varela J. CTLA-4 and autoimmunity: new insights into the dual regulator of tolerance. Autoimmun Rev. 2013;12(12):1171–6. doi: 10.1016/j.autrev.2013.07.002.CrossRefPubMedGoogle Scholar
- 53.Linsley PS, Greene JL, Tan P, Bradshaw J, Ledbetter JA, Anasetti C, et al. Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. The Journal of experimental medicine. 1992;176(6):1595–604.CrossRefPubMedGoogle Scholar
- 54.Vaque JP, Gomez-Lopez G, Monsalvez V, Varela I, Martinez N, Perez C, et al. PLCG1 mutations in cutaneous T-cell lymphomas. Blood. 2014;123(13):2034–43. doi: 10.1182/blood-2013-05-504308.CrossRefPubMedGoogle Scholar
- 55.Sekulic A, Liang WS, Tembe W, Izatt T, Kruglyak S, Kiefer JA, et al. Personalized treatment of Sezary syndrome by targeting a novel CTLA4:CD28 fusion. Molecular genetics & genomic medicine. 2015;3(2):130–6. doi: 10.1002/mgg3.121.CrossRefGoogle Scholar
- 56.Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell. 1997;89(4):587–96.CrossRefPubMedGoogle Scholar
- 57.Cleere R, Long A, Kelleher D, O’Neill LA. Autocrine regulation of the transcription factor NF kappa B by TNF alpha in the human T cell lymphoma line Hut 78. Biochemical Society transactions. 1995;23(1):113S.CrossRefPubMedGoogle Scholar
- 58.O’Connell MA, Cleere R, Long A, O’Neill LA, Kelleher D. Cellular proliferation and activation of NF kappa B are induced by autocrine production of tumor necrosis factor alpha in the human T lymphoma line HuT 78. The Journal of biological chemistry. 1995;270(13):7399–404.CrossRefPubMedGoogle Scholar
- 59.Giri DK, Aggarwal BB. Constitutive activation of NF-kappaB causes resistance to apoptosis in human cutaneous T cell lymphoma HuT-78 cells. Autocrine role of tumor necrosis factor and reactive oxygen intermediates. The Journal of biological chemistry. 1998;273(22):14008–14.CrossRefPubMedGoogle Scholar
- 60.Izban KF, Ergin M, Qin JZ, Martinez RL, Pooley RJ, Saeed S, et al. Constitutive expression of NF-kappa B is a characteristic feature of mycosis fungoides: implications for apoptosis resistance and pathogenesis. Human pathology. 2000;31(12):1482–90.CrossRefPubMedGoogle Scholar
- 61.Sors A, Jean-Louis F, Pellet C, Laroche L, Dubertret L, Courtois G, et al. Down-regulating constitutive activation of the NF-kappaB canonical pathway overcomes the resistance of cutaneous T-cell lymphoma to apoptosis. Blood. 2006;107(6):2354–63. doi: 10.1182/blood-2005-06-2536.CrossRefPubMedGoogle Scholar
- 62.Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends in immunology. 2004;25(6):280–8. doi: 10.1016/j.it.2004.03.008.CrossRefPubMedGoogle Scholar
- 63.Sommer K, Guo B, Pomerantz JL, Bandaranayake AD, Moreno-Garcia ME, Ovechkina YL, et al. Phosphorylation of the CARMA1 linker controls NF-kappaB activation. Immunity. 2005;23(6):561–74. doi: 10.1016/j.immuni.2005.09.014.CrossRefPubMedGoogle Scholar
- 64.Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW, et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science. 2008;319(5870):1676–9. doi: 10.1126/science.1153629.CrossRefPubMedGoogle Scholar
- 65.Migliazza A, Lombardi L, Rocchi M, Trecca D, Chang CC, Antonacci R, et al. Heterogeneous chromosomal aberrations generate 3′ truncations of the NFKB2/lyt-10 gene in lymphoid malignancies. Blood. 1994;84(11):3850–60.PubMedGoogle Scholar
- 66.Zhang J, Chang CC, Lombardi L, Dalla-Favera R. Rearranged NFKB2 gene in the HUT78 T-lymphoma cell line codes for a constitutively nuclear factor lacking transcriptional repressor functions. Oncogene. 1994;9(7):1931–7.PubMedGoogle Scholar
- 67.Zhou J, Ching YQ, Chng WJ. Aberrant nuclear factor-kappa B activity in acute myeloid leukemia: from molecular pathogenesis to therapeutic target. Oncotarget. 2015;6(8):5490–500. doi: 10.18632/oncotarget.3545.CrossRefPubMedPubMedCentralGoogle Scholar
- 68.Legarda-Addison D, Ting AT. Negative regulation of TCR signaling by NF-kappaB2/p100. Journal of immunology. 2007;178(12):7767–78.CrossRefGoogle Scholar
- 69.Chang TP, Poltoratsky V, Vancurova I. Bortezomib inhibits expression of TGF-beta1, IL-10, and CXCR4, resulting in decreased survival and migration of cutaneous T cell lymphoma cells. Journal of immunology. 2015;194(6):2942–53. doi: 10.4049/jimmunol.1402610.CrossRefGoogle Scholar
- 70.Zinzani PL, Musuraca G, Tani M, Stefoni V, Marchi E, Fina M, et al. Phase II trial of proteasome inhibitor bortezomib in patients with relapsed or refractory cutaneous T-cell lymphoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2007;25(27):4293–7. doi: 10.1200/JCO.2007.11.4207.CrossRefGoogle Scholar
- 71.Heider U, Rademacher J, Lamottke B, Mieth M, Moebs M, von Metzler I, et al. Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in cutaneous T cell lymphoma. European journal of haematology. 2009;82(6):440–9. doi: 10.1111/j.1600-0609.2009.01239.x.CrossRefPubMedGoogle Scholar
- 72.Juvekar A, Manna S, Ramaswami S, Chang TP, Vu HY, Ghosh CC, et al. Bortezomib induces nuclear translocation of IkappaBalpha resulting in gene-specific suppression of NF-kappaB--dependent transcription and induction of apoptosis in CTCL. Molecular cancer research : MCR. 2011;9(2):183–94. doi: 10.1158/1541-7786.MCR-10-0368.CrossRefPubMedPubMedCentralGoogle Scholar
- 73.Eriksen KW, Kaltoft K, Mikkelsen G, Nielsen M, Zhang Q, Geisler C, et al. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia. 2001;15(5):787–93.CrossRefPubMedGoogle Scholar
- 74.Fantin VR, Loboda A, Paweletz CP, Hendrickson RC, Pierce JW, Roth JA, et al. Constitutive activation of signal transducers and activators of transcription predicts vorinostat resistance in cutaneous T-cell lymphoma. Cancer research. 2008;68(10):3785–94. doi: 10.1158/0008-5472.CAN-07-6091.CrossRefPubMedGoogle Scholar
- 75.Netchiporouk E, Litvinov IV, Moreau L, Gilbert M, Sasseville D, Duvic M. Deregulation in STAT signaling is important for cutaneous T-cell lymphoma (CTCL) pathogenesis and cancer progression. Cell cycle. 2014;13(21):3331–5. doi: 10.4161/15384101.2014.965061.CrossRefPubMedPubMedCentralGoogle Scholar
- 76.Kopp KL, Ralfkiaer U, Gjerdrum LM, Helvad R, Pedersen IH, Litman T, et al. STAT5-mediated expression of oncogenic miR-155 in cutaneous T-cell lymphoma. Cell cycle. 2013;12(12):1939–47. doi: 10.4161/cc.24987.CrossRefPubMedPubMedCentralGoogle Scholar
- 77.Perez C, Gonzalez-Rincon J, Onaindia A, Almaraz C, Garcia-Diaz N, Pisonero H, et al. Mutated JAK kinases and deregulated STAT activity are potential therapeutic targets in cutaneous T-cell lymphoma. Haematologica. 2015;100(11):e450–3. doi: 10.3324/haematol.2015.132837.CrossRefPubMedPubMedCentralGoogle Scholar
- 78.Bergmann AK, Schneppenheim S, Seifert M, Betts MJ, Haake A, Lopez C, et al. Recurrent mutation of JAK3 in T-cell prolymphocytic leukemia. Genes, chromosomes & cancer. 2014;53(4):309–16. doi: 10.1002/gcc.22141.CrossRefGoogle Scholar
- 79.Hornakova T, Springuel L, Devreux J, Dusa A, Constantinescu SN, Knoops L, et al. Oncogenic JAK1 and JAK2-activating mutations resistant to ATP-competitive inhibitors. Haematologica. 2011;96(6):845–53. doi: 10.3324/haematol.2010.036350.CrossRefPubMedPubMedCentralGoogle Scholar
- 80.Koskela HL, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmaki H, Andersson EI, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. The New England journal of medicine. 2012;366(20):1905–13. doi: 10.1056/NEJMoa1114885.CrossRefPubMedPubMedCentralGoogle Scholar
- 81.Haddad BR, Gu L, Mirtti T, Dagvadorj A, Vogiatzi P, Hoang DT, et al. STAT5A/B gene locus undergoes amplification during human prostate cancer progression. The American journal of pathology. 2013;182(6):2264–75. doi: 10.1016/j.ajpath.2013.02.044.CrossRefPubMedPubMedCentralGoogle Scholar
- 82.Scott LJ. Tofacitinib: a review of its use in adult patients with rheumatoid arthritis. Drugs. 2013;73(8):857–74. doi: 10.1007/s40265-013-0065-8.CrossRefPubMedGoogle Scholar
- 83.McKeage K. Ruxolitinib: a review in polycythaemia vera. Drugs. 2015;75(15):1773–81. doi: 10.1007/s40265-015-0470-2.CrossRefPubMedGoogle Scholar
- 84.Meyer SC, Levine RL. Molecular pathways: molecular basis for sensitivity and resistance to JAK kinase inhibitors. Clinical cancer research : an official journal of the American Association for Cancer Research. 2014;20(8):2051–9. doi: 10.1158/1078-0432.CCR-13-0279.CrossRefGoogle Scholar