Advertisement

An Update on the Role of Immunotherapy and Vaccine Strategies for Primary Brain Tumors

  • Martha R. Neagu
  • David A. Reardon
Neuro-oncology (GJ Lesser, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuro-oncology

Opinion statement

Existing therapies for glioblastoma (GBM), the most common malignant primary brain tumor in adults, have fallen short of improving the dismal patient outcomes, with an average 14–16-month median overall survival. The biological complexity and adaptability of GBM, redundancy of dysregulated signaling pathways, and poor penetration of therapies through the blood–brain barrier contribute to poor therapeutic progress. The current standard of care for newly diagnosed GBM consists of maximal safe resection, followed by fractionated radiotherapy combined with concurrent temozolomide (TMZ) and 6–12 cycles of adjuvant TMZ. At progression, bevacizumab with or without additional chemotherapy is an option for salvage therapy. The recent FDA approval of sipuleucel-T for prostate cancer and ipilumimab, nivolumab, and pembrolizumab for select solid tumors and the ongoing trials showing clinical efficacy and response durability herald a new era of cancer treatment with the potential to change standard-of-care treatment across multiple cancers. The evaluation of various immunotherapeutics is advancing for GBM, putting into question the dogma of the CNS as an immuno-privileged site. While the field is yet young, both active immunotherapy involving vaccine strategies and cellular therapy as well as reversal of GBM-induced global immune-suppression through immune checkpoint blockade are showing promising results and revealing essential immunological insights regarding kinetics of the immune response, immune evasion, and correlative biomarkers. The future holds exciting promise in establishing new treatment options for GBM that harness the patients’ own immune system by activating it with immune checkpoint inhibitors, providing specificity using vaccine therapy, and allowing for modulation and enhancement by combinatorial approaches.

Keywords

GBM Immunotherapy Checkpoint blockade Vaccines Autologous T cells CAR T cells Rindopepimut EGFRvIII 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Martha R. Neagu has received financial support through a grant from the National Institutes of Health (K12CA090354).

David A. Reardon has served on advisory boards for AbbVie, Amgen, Bristol-Myers Squibb, Cavion, Genentech/Roche, Merck, Midatech, Regeneron, and Stemline Therapeutics and has conducted lectures on behalf of Genentech/Roche and Merck.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-Oncology. 2014;16 Suppl 4:iv1–63. doi: 10.1093/neuonc/nou223.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Ostrom QT, Gittleman H, Stetson L, Virk SM, Barnholtz-Sloan JS. Epidemiology of gliomas. Cancer Treat Res. 2015;163:1–14. doi: 10.1007/978-3-319-12048-5_1.PubMedCrossRefGoogle Scholar
  3. 3.
    Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507. doi: 10.1056/NEJMra0708126.PubMedCrossRefGoogle Scholar
  4. 4.
    Schiff D, Lee EQ, Nayak L, Norden AD, Reardon DA, Wen PY. Medical management of brain tumors and the sequelae of treatment. Neuro-Oncology. 2014. doi: 10.1093/neuonc/nou304.Google Scholar
  5. 5.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96. doi: 10.1056/NEJMoa043330.PubMedCrossRefGoogle Scholar
  6. 6.
    Bauchet L, Mathieu-Daude H, Fabbro-Peray P, Rigau V, Fabbro M, Chinot O, et al. Oncological patterns of care and outcome for 952 patients with newly diagnosed glioblastoma in 2004. Neuro-Oncology. 2010;12(7):725–35. doi: 10.1093/neuonc/noq030.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66. doi: 10.1016/S1470-2045(09)70025-7.PubMedCrossRefGoogle Scholar
  8. 8.
    Chinot OL, Wick W, Cloughesy T. Bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(21):2049.PubMedCrossRefGoogle Scholar
  9. 9.
    Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol : Off J Am Soc Clin Oncol. 2009;27(28):4733–40. doi: 10.1200/JCO.2008.19.8721.CrossRefGoogle Scholar
  10. 10.
    Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699–708. doi: 10.1056/NEJMoa1308573.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Taal W, Oosterkamp HM, Walenkamp AM, Dubbink HJ, Beerepoot LV, Hanse MC, et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol. 2014;15(9):943–53. doi: 10.1016/S1470-2045(14)70314-6.PubMedCrossRefGoogle Scholar
  12. 12.••
    Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18. doi: 10.1056/NEJMoa1215134. This study shows the first clinical efficacy of adoptive CAR T cell transfer.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. doi: 10.1056/NEJMoa1003466.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22. doi: 10.1056/NEJMoa1001294.PubMedCrossRefGoogle Scholar
  15. 15.••
    Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30. doi: 10.1056/NEJMoa1412082. This study shows durable and robust anti-tumor effects of PD-1 blockade in melanoma.PubMedCrossRefGoogle Scholar
  16. 16.
    Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384(9948):1109–17. doi: 10.1016/S0140-6736(14)60958-2.PubMedCrossRefGoogle Scholar
  17. 17.
    Fecci PE, Heimberger AB, Sampson JH. Immunotherapy for primary brain tumors: no longer a matter of privilege. Clin Cancer Res : Off J Am Assoc Cancer Res. 2014;20(22):5620–9. doi: 10.1158/1078-0432.CCR-14-0832.CrossRefGoogle Scholar
  18. 18.
    Reardon DA, Freeman G, Wu C, Chiocca EA, Wucherpfennig KW, Wen PY, et al. Immunotherapy advances for glioblastoma. Neuro-Oncology. 2014;16(11):1441–58. doi: 10.1093/neuonc/nou212.PubMedCrossRefGoogle Scholar
  19. 19.
    Constam DB, Philipp J, Malipiero UV, ten Dijke P, Schachner M, Fontana A. Differential expression of transforming growth factor-beta 1, -beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia. J Immunol. 1992;148(5):1404–10.PubMedGoogle Scholar
  20. 20.
    Crane CA, Ahn BJ, Han SJ, Parsa AT. Soluble factors secreted by glioblastoma cell lines facilitate recruitment, survival, and expansion of regulatory T cells: implications for immunotherapy. Neuro-Oncology. 2012;14(5):584–95. doi: 10.1093/neuonc/nos014.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Facoetti A, Nano R, Zelini P, Morbini P, Benericetti E, Ceroni M, et al. Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin Cancer Res : Off J Am Assoc Cancer Res. 2005;11(23):8304–11. doi: 10.1158/1078-0432.CCR-04-2588.CrossRefGoogle Scholar
  22. 22.
    Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res : Off J Am Assoc Cancer Res. 1999;5(10):2963–70.Google Scholar
  23. 23.
    Heimberger AB, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Sun W, Qiao W, et al. Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res : Off J Am Assoc Cancer Res. 2008;14(16):5166–72. doi: 10.1158/1078-0432.CCR-08-0320.CrossRefGoogle Scholar
  24. 24.
    Huettner C, Paulus W, Roggendorf W. Messenger RNA expression of the immunosuppressive cytokine IL-10 in human gliomas. Am J Pathol. 1995;146(2):317–22.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro-Oncology. 2006;8(3):261–79. doi: 10.1215/15228517-2006-008.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Jacobs JF, Idema AJ, Bol KF, Grotenhuis JA, de Vries IJ, Wesseling P, et al. Prognostic significance and mechanism of Treg infiltration in human brain tumors. J Neuroimmunol. 2010;225(1-2):195–9. doi: 10.1016/j.jneuroim.2010.05.020.PubMedCrossRefGoogle Scholar
  27. 27.
    Jansen T, Tyler B, Mankowski JL, Recinos VR, Pradilla G, Legnani F, et al. FasL gene knock-down therapy enhances the antiglioma immune response. Neuro-Oncology. 2010;12(5):482–9. doi: 10.1093/neuonc/nop052.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. doi: 10.1146/annurev.immunol.26.021607.090331.PubMedCrossRefGoogle Scholar
  29. 29.
    Schartner JM, Hagar AR, Van Handel M, Zhang L, Nadkarni N, Badie B. Impaired capacity for upregulation of MHC class II in tumor-associated microglia. Glia. 2005;51(4):279–85. doi: 10.1002/glia.20201.PubMedCrossRefGoogle Scholar
  30. 30.
    Walker DG, Chuah T, Rist MJ, Pender MP. T-cell apoptosis in human glioblastoma multiforme: implications for immunotherapy. J Neuroimmunol. 2006;175(1–2):59–68. doi: 10.1016/j.jneuroim.2006.03.006.PubMedCrossRefGoogle Scholar
  31. 31.
    Schijns VE, Pretto C, Devillers L, Pierre D, Hofman FM, Chen TC, et al. First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity. Vaccine. 2015;33(23):2690–6. doi: 10.1016/j.vaccine.2015.03.095.PubMedCrossRefGoogle Scholar
  32. 32.
    Reardon DA, Wucherpfennig KW, Freeman G, Wu CJ, Chiocca EA, Wen PY, et al. An update on vaccine therapy and other immunotherapeutic approaches for glioblastoma. Expert Rev Vaccines. 2013;12(6):597–615. doi: 10.1586/erv.13.41.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Sayegh ET, Oh T, Fakurnejad S, Bloch O, Parsa AT. Vaccine therapies for patients with glioblastoma. J Neuro-Oncol. 2014;119(3):531–46. doi: 10.1007/s11060-014-1502-6.CrossRefGoogle Scholar
  34. 34.•
    Mitchell DA, Batich KA, Gunn MD, Huang MN, Sanchez-Perez L, Nair SK, et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature. 2015;519(7543):366–9. doi: 10.1038/nature14320. This is elegant study demonstrates that tetanus toxoid can significantly augment anti-glioma immune responses from vaccination.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Abecassis IJ, Morton RP, Nerva JD, Kim LJ. Immunotherapy for secondary glioblastoma multiforme: toward an isocitrate dehydrogenase vaccine. World Neurosurg. 2014;82(6):933–5. doi: 10.1016/j.wneu.2014.10.006.PubMedCrossRefGoogle Scholar
  36. 36.•
    Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;512(7514):324–7. doi: 10.1038/nature13387. A systematic approach to creating an anti-IDH-1 R132H petide vaccine, which may in time allow for targeting lower grade gliomas. This paper also shows that IDH-1R132H may be an inherently immunogenic target in patients.PubMedCrossRefGoogle Scholar
  37. 37.
    Akiyama Y, Oshita C, Kume A, Iizuka A, Miyata H, Komiyama M, et al. alpha-type-1 polarized dendritic cell-based vaccination in recurrent high-grade glioma: a phase I clinical trial. BMC Cancer. 2012;12:623. doi: 10.1186/1471-2407-12-623.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Prins RM, Wang X, Soto H, Young E, Lisiero DN, Fong B, et al. Comparison of glioma-associated antigen peptide-loaded versus autologous tumor lysate-loaded dendritic cell vaccination in malignant glioma patients. J Immunother. 2013;36(2):152–7. doi: 10.1097/CJI.0b013e3182811ae4.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Sampson JH, Archer GE, Mitchell DA, Heimberger AB, Herndon 2nd JE, Lally-Goss D, et al. An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther. 2009;8(10):2773–9. doi: 10.1158/1535-7163.MCT-09-0124.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.••
    Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H, Nuno MA, et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol, Immunother : CII. 2013;62(1):125–35. doi: 10.1007/s00262-012-1319-0. This multi-epitope vaccine has now shown promising results in Phase 2 trials.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Del Vecchio CA, Li G, Wong AJ. Targeting EGF receptor variant III: tumor-specific peptide vaccination for malignant gliomas. Expert Rev Vaccines. 2012;11(2):133–44. doi: 10.1586/erv.11.177.PubMedCrossRefGoogle Scholar
  42. 42.
    Neagu MR, Reardon DA. Rindopepimut vaccine and bevacizumab combination therapy: improving survival rates in relapsed glioblastoma patients? Immunotherapy. 2015. doi: 10.2217/imt.15.39.PubMedGoogle Scholar
  43. 43.
    Patel MA, Kim JE, Ruzevick J, Li G, Lim M. The future of glioblastoma therapy: synergism of standard of care and immunotherapy. Cancers. 2014;6(4):1953–85. doi: 10.3390/cancers6041953.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Swartz AM, Batich KA, Fecci PE, Sampson JH. Peptide vaccines for the treatment of glioblastoma. J Neuro-Oncol. 2014. doi: 10.1007/s11060-014-1676-y.Google Scholar
  45. 45.
    Heimberger AB, Crotty LE, Archer GE, Hess KR, Wikstrand CJ, Friedman AH, et al. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clin Cancer Res : Off J Am Assoc Cancer Res. 2003;9(11):4247–54.Google Scholar
  46. 46.
    Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol : Off J Am Soc Clin Oncol. 2010;28(31):4722–9. doi: 10.1200/JCO.2010.28.6963.CrossRefGoogle Scholar
  47. 47.••
    Reardon DA, Schuster J, Tran DD, Fink KL, Nabors LB, Li G, et al. ReACT: overall survival from a randomized phase II study of rindopepimut (CDX-110) plus bevacizumab in relapsed glioblastoma. Journal of Clinical Oncology: official journal of the American Society of Clinical Oncology. 2015;33(suppl;abstr 2009) Rindopepimut is the most advanced vaccine in development for glioblastoma. The ReACT study is the first randomized trial to demonstrate a survival benefit for any immunotherapeutic among GBM patients.Google Scholar
  48. 48.
    Sampson JH, Aldape KD, Archer GE, Coan A, Desjardins A, Friedman AH, et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro-Oncology. 2011;13(3):324–33. doi: 10.1093/neuonc/noq157.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Babu R, Adamson DC. Rindopepimut: an evidence-based review of its therapeutic potential in the treatment of EGFRvIII-positive glioblastoma. Core Evid. 2012;7:93–103. doi: 10.2147/CE.S29001.PubMedCentralPubMedGoogle Scholar
  50. 50.
    Ampie L, Choy W, Lamano JB, Fakurnejad S, Bloch O, Parsa AT. Heat shock protein vaccines against glioblastoma: from bench to bedside. J Neuro-Oncol. 2015;123(3):441–8. doi: 10.1007/s11060-015-1837-7.CrossRefGoogle Scholar
  51. 51.
    Crane CA, Han SJ, Ahn B, Oehlke J, Kivett V, Fedoroff A, et al. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Clin Cancer Res : Off J Am Assoc Cancer Res. 2013;19(1):205–14. doi: 10.1158/1078-0432.CCR-11-3358.CrossRefGoogle Scholar
  52. 52.•
    Bloch O, Crane CA, Fuks Y, Kaur R, Aghi MK, Berger MS, et al. Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. Neuro-Oncology. 2014;16(2):274–9. doi: 10.1093/neuonc/not203. This autologous heat-shock protein vaccine shows intriguing results.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Bloch O, Raizer JJ, Lim M, Sughrue M, Komotar R, Abrahams J, O’Rourke D, D’Ambrosio A, Bruce JN, Parsa A. Newly diagnosed glioblastoma patients treated with an autologous heat shock protein peptide vaccine: PD-L1 expression and response to therapy. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2015;33(suppl; abstr 2011).Google Scholar
  54. 54.
    Lawler SE. Cytomegalovirus and glioblastoma: controversies and opportunities. J Neuro-Oncol. 2015;123(3):465–71. doi: 10.1007/s11060-015-1734-0.CrossRefGoogle Scholar
  55. 55.
    Mitchell DA, Xie W, Schmittling R, Learn C, Friedman A, McLendon RE, et al. Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro-Oncology. 2008;10(1):10–8. doi: 10.1215/15228517-2007-035.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Priel E, Wohl A, Teperberg M, Nass D, Cohen ZR. Human cytomegalovirus viral load in tumor and peripheral blood samples of patients with malignant gliomas. J Clin Neurosci : Off J Neurosurg Soc Australasia. 2015;22(2):326–30. doi: 10.1016/j.jocn.2014.06.099.CrossRefGoogle Scholar
  57. 57.
    Izumoto S, Tsuboi A, Oka Y, Suzuki T, Hashiba T, Kagawa N, et al. Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg. 2008;108(5):963–71. doi: 10.3171/JNS/2008/108/5/0963.PubMedCrossRefGoogle Scholar
  58. 58.
    Yajima N, Yamanaka R, Mine T, Tsuchiya N, Homma J, Sano M, et al. Immunologic evaluation of personalized peptide vaccination for patients with advanced malignant glioma. Clin Cancer Res : Off J Am Assoc Cancer Res. 2005;11(16):5900–11. doi: 10.1158/1078-0432.CCR-05-0559.CrossRefGoogle Scholar
  59. 59.
    Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A, Ferel D, et al. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci U S A. 2005;102(44):16013–8. doi: 10.1073/pnas.0500090102.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Rajasagi M, Shukla SA, Fritsch EF, Keskin DB, DeLuca D, Carmona E, et al. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood. 2014;124(3):453–62. doi: 10.1182/blood-2014-04-567933.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Zhang GL, Ansari HR, Bradley P, Cawley GC, Hertz T, Hu X, et al. Machine learning competition in immunology—prediction of HLA class I binding peptides. J Immunol Methods. 2011;374(1–2):1–4. doi: 10.1016/j.jim.2011.09.010.PubMedGoogle Scholar
  62. 62.
    Castle JC, Kreiter S, Diekmann J, Lower M, van de Roemer N, de Graaf J, et al. Exploiting the mutanome for tumor vaccination. Cancer Res. 2012;72(5):1081–91. doi: 10.1158/0008-5472.CAN-11-3722.PubMedCrossRefGoogle Scholar
  63. 63.
    Prieto PA, Yang JC, Sherry RM, Hughes MS, Kammula US, White DE, et al. CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin Cancer Res : Off J Am Assoc Cancer Res. 2012;18(7):2039–47. doi: 10.1158/1078-0432.CCR-11-1823.CrossRefGoogle Scholar
  64. 64.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65. doi: 10.1056/NEJMoa1200694.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54. doi: 10.1056/NEJMoa1200690.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364(26):2517–26. doi: 10.1056/NEJMoa1104621.PubMedCrossRefGoogle Scholar
  67. 67.
    Weber JS, Kahler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol : Off J Am Soc Clin Oncol. 2012;30(21):2691–7. doi: 10.1200/JCO.2012.41.6750.CrossRefGoogle Scholar
  68. 68.
    Margolin K, Ernstoff MS, Hamid O, Lawrence D, McDermott D, Puzanov I, et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 2012;13(5):459–65. doi: 10.1016/S1470-2045(12)70090-6.PubMedCrossRefGoogle Scholar
  69. 69.
    Fecci PE, Ochiai H, Mitchell DA, Grossi PM, Sweeney AE, Archer GE, et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res : Off J Am Assoc Cancer Res. 2007;13(7):2158–67. doi: 10.1158/1078-0432.CCR-06-2070.CrossRefGoogle Scholar
  70. 70.
    Vom Berg J, Vrohlings M, Haller S, Haimovici A, Kulig P, Sledzinska A, et al. Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell-mediated glioma rejection. J Exp Med. 2013;210(13):2803–11. doi: 10.1084/jem.20130678.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86(2):343–9. doi: 10.1016/j.ijrobp.2012.12.025.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Reardon D, Gokhale P, Ligon K, Liao X, Rodig S, Zhou J, et al. Immune checkpoint blockade for glioblastoma: preclinical activity of single agent and combinagtorial therapy. Neuro-Oncology. 2014;16:v110–8. doi: 10.1093/neuonc/nou258.CrossRefGoogle Scholar
  73. 73.
    Suryadevara CM, Verla T, Sanchez-Perez L, Reap EA, Choi BD, Fecci PE, et al. Immunotherapy for malignant glioma. Surg Neurol Int. 2015;6 Suppl 1:S68–77. doi: 10.4103/2152-7806.151341.PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med. 1987;316(15):889–97. doi: 10.1056/NEJM198704093161501.PubMedCrossRefGoogle Scholar
  75. 75.
    Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res : Off J Am Assoc Cancer Res. 2011;17(13):4550–7. doi: 10.1158/1078-0432.CCR-11-0116.CrossRefGoogle Scholar
  76. 76.
    Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol : Off J Am Soc Clin Oncol. 2005;23(10):2346–57. doi: 10.1200/JCO.2005.00.240.CrossRefGoogle Scholar
  77. 77.
    Heslop HE, Slobod KS, Pule MA, Hale GA, Rousseau A, Smith CA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925–35. doi: 10.1182/blood-2009-08-239186.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.•
    Schuessler A, Smith C, Beagley L, Boyle GM, Rehan S, Matthews K, et al. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 2014;74(13):3466–76. doi: 10.1158/0008-5472.CAN-14-0296. This approach uses autologous T cell transfer to target CMV epitopes expressed by glioma cells.PubMedCrossRefGoogle Scholar
  79. 79.
    Sanchez-Perez LA, Choi BD, Archer GE, Cui X, Flores C, Johnson LA, et al. Myeloablative temozolomide enhances CD8(+) T-cell responses to vaccine and is required for efficacy against brain tumors in mice. PLoS One. 2013;8(3), e59082. doi: 10.1371/journal.pone.0059082.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–20. doi: 10.1182/blood-2011-10-384388.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Pule MA, Savoldo B, Myers GD, Rossig C, Russell HV, Dotti G, et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med. 2008;14(11):1264–70. doi: 10.1038/nm.1882.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Chow KK, Naik S, Kakarla S, Brawley VS, Shaffer DR, Yi Z, et al. T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol Ther : J Am Soc Gene Ther. 2013;21(3):629–37. doi: 10.1038/mt.2012.210.CrossRefGoogle Scholar
  83. 83.
    Hegde M, Corder A, Chow KK, Mukherjee M, Ashoori A, Kew Y, et al. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol Ther : J Am Soc Gene Ther. 2013;21(11):2087–101. doi: 10.1038/mt.2013.185.CrossRefGoogle Scholar
  84. 84.
    Miao H, Choi BD, Suryadevara CM, Sanchez-Perez L, Yang S, De Leon G, et al. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma. PLoS One. 2014;9(4), e94281. doi: 10.1371/journal.pone.0094281.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Morgan RA, Johnson LA, Davis JL, Zheng Z, Woolard KD, Reap EA, et al. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum Gene Ther. 2012;23(10):1043–53. doi: 10.1089/hum.2012.041.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, et al. Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res : Off J Am Assoc Cancer Res. 2015. doi: 10.1158/1078-0432.CCR-15-0428.Google Scholar
  87. 87.
    Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol : Off J Am Soc Clin Oncol. 2010;28(11):1963–72. doi: 10.1200/JCO.2009.26.3541.CrossRefGoogle Scholar
  88. 88.
    Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbe C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res : Off J Am Assoc Cancer Res. 2009;15(23):7412–20. doi: 10.1158/1078-0432.CCR-09-1624.CrossRefGoogle Scholar
  89. 89.••
    Okada H, Weller, M., Huang, R. et. al. Immunotherapy Response Assessment in Neuro-Oncology (iRANO): a report of the RANO Working Group Lancet Oncology. 2015;In Press.The iRANO Working Group redefines response criteria for immunotherapy among neuro-oncology patients in this manuscript.Google Scholar
  90. 90.•
    Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33. doi: 10.1056/NEJMoa1302369. This work shows enhanced efficacy of combination CTLA-4 and PD-1 blockade in treatment of melanoma.PubMedCrossRefGoogle Scholar
  91. 91.
    Weathers SP, Gilbert MR. Current challenges in designing GBM trials for immunotherapy. J Neuro-Oncol. 2015;123(3):331–7. doi: 10.1007/s11060-015-1716-2.CrossRefGoogle Scholar
  92. 92.
    Agarwalla P, Barnard Z, Fecci P, Dranoff G, Curry Jr WT. Sequential immunotherapy by vaccination with GM-CSF-expressing glioma cells and CTLA-4 blockade effectively treats established murine intracranial tumors. J Immunother. 2012;35(5):385–9. doi: 10.1097/CJI.0b013e3182562d59.PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Duraiswamy J, Freeman GJ, Coukos G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors—response. Cancer Res. 2014;74(2):633–4. doi: 10.1158/0008-5472.CAN-13-2752. discussion 5.PubMedCrossRefGoogle Scholar
  94. 94.
    Chow KK, Hara W, Lim M, Li G. Combining immunotherapy with radiation for the treatment of glioblastoma. J Neuro-Oncol. 2015;123(3):459–64. doi: 10.1007/s11060-015-1762-9.CrossRefGoogle Scholar
  95. 95.
    Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366(10):925–31. doi: 10.1056/NEJMoa1112824.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114(3):589–95. doi: 10.1182/blood-2009-02-206870.PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM. Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol. 2008;180(5):3132–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 2006;203(5):1259–71. doi: 10.1084/jem.20052494.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Sims JS, Ung TH, Neira JA, Canoll P, Bruce JN. Biomarkers for glioma immunotherapy: the next generation. J Neuro-Oncol. 2015;123(3):359–72. doi: 10.1007/s11060-015-1746-9.CrossRefGoogle Scholar
  100. 100.
    Gustafson MP, Lin Y, LaPlant B, Liwski CJ, Maas ML, League SC, et al. Immune monitoring using the predictive power of immune profiles. J Immunother Cancer. 2013;1:7. doi: 10.1186/2051-1426-1-7.PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Stricker TP, Morales La Madrid A, Chlenski A, Guerrero L, Salwen HR, Gosiengfiao Y, et al. Validation of a prognostic multi-gene signature in high-risk neuroblastoma using the high throughput digital NanoString nCounter system. Mol Oncol. 2014;8(3):669–78. doi: 10.1016/j.molonc.2014.01.010.PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Nielsen T, Wallden B, Schaper C, Ferree S, Liu S, Gao D, et al. Analytical validation of the PAM50-based Prosigna Breast Cancer Prognostic Gene Signature Assay and nCounter Analysis System using formalin-fixed paraffin-embedded breast tumor specimens. BMC Cancer. 2014;14:177. doi: 10.1186/1471-2407-14-177.PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71. doi: 10.1038/nature13954.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110. doi: 10.1016/j.ccr.2009.12.020.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Dana-Farber Cancer InstituteBostonUSA
  2. 2.Pappas Center for Neuro-OncologyMassachusetts General HospitalBostonUSA

Personalised recommendations