Current Treatment Options in Oncology

, Volume 15, Issue 3, pp 380–394 | Cite as

Molecular Targeted Therapy in Hepatocellular Carcinoma: From Biology to Clinical Practice and Future

  • Anuj Patel
  • Weijing SunEmail author
Upper Gastrointestinal Cancers (L Rajdev, Section Editor)

Opinion statement

Hepatocellular carcinoma (HCC) is one of the most lethal cancers globally, particularly in certain regions of the world. Although the major risk factors for HCC have been identified, the specific mechanisms driving hepatocarcinogenesis remain unclear. Sorafenib is the only systemic therapy that has demonstrated an overall survival benefit in patients with advanced HCC and does so primarily through antiangiogenic activity. However, that actual benefit is still relatively small. Extensive research has focused on targeting dysfunctional molecular pathways in HCC. Despite promising preclinical and early-phase studies, other agents have failed to expand upon the efficacy of sorafenib in large-scale randomized trials. As the development of treatment options in the post-sorafenib setting is ongoing, more efforts are being focused on (1) evaluation of molecular agents targeting pathogenic, HCC-specific pathways; (2) the combination of targeted and cytotoxic therapies in selected subgroups; and (3) the combination of systemic and locoregional therapies in various settings. This article provides a review of recently completed and ongoing studies of molecular targeted agents in HCC, including a brief description of the biologic rationale behind these agents.


Hepatocellular carcinoma Sorafenib Targeted therapy 


Compliance with Ethics Guidelines

Conflict of Interest

Anuj Patel and Weijing Sun declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. 1.
    International Agency for Research on Cancer. GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012 [Internet]. Available at: Accessed March 30, 2014.
  2. 2.
    Llovet JM, Schwartz M, Mazzaferro V. Resection and liver transplantation for hepatocellular carcinoma. Semin Liver Dis. 2005;25:181–200.PubMedCrossRefGoogle Scholar
  3. 3.
    Liu JH, Chen PW, Asch SM, Busuttil RW, Ko CY. Surgery for hepatocellular carcinoma: does it improve survival? Ann Surg Oncol. 2004;11:298–303.PubMedCrossRefGoogle Scholar
  4. 4.
    Mazzaferro V, Llovet JM, Miceli R, Bhoori S. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol. 2009;10:35–43.PubMedCrossRefGoogle Scholar
  5. 5.
    Ihde DC, Kane RC, Cohen MH, McIntire KR, Minna JD. Adriamycin therapy in American patients with hepatocellular carcinoma. Cancer Treat Rep. 1977;61:1385–7.PubMedGoogle Scholar
  6. 6.
    Qin S, Bai Y, Lim HY, Thongprasert S, Chao Y, Fan J, et al. Randomized, multicenter, open-label study of oxaliplatin plus fluorouracil/leucovorin versus doxorubicin as palliative chemotherapy in patients with advanced hepatocellular carcinoma from Asia. J Clin Oncol. 2013;31:3501–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Sherman M. Hepatocellular carcinoma: epidemiology, surveillance, and diagnosis. Semin Liver Dis. 2010;30:3–16.PubMedCrossRefGoogle Scholar
  8. 8.
    El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.PubMedCrossRefGoogle Scholar
  9. 9.•
    Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006;6:674–87. This article provide a review of the etiological factors and associated molecular mechanisms involved in hepatocarcinogenesis.PubMedCrossRefGoogle Scholar
  10. 10.
    Shlomai A, de Jong YP, Rice CM. Virus associated malignancies: The role of viral hepatitis in hepatocellular carcinoma. Semin Cancer Biol. 2014. doi: 10.1016/j.semcancer.2014.01.004.
  11. 11.
    Tao Y, Ruan J, Yeh S-H, Lu X, Wang Y, Zhai W, et al. Rapid growth of a hepatocellular carcinoma and the driving mutations revealed by cell-population genetic analysis of whole-genome data. Proc Natl Acad Sci. 2011;108:12042–7.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Zhang DY, Friedman SL. Fibrosis‐dependent mechanisms of hepatocarcinogenesis. Hepatology. 2012;56:769–75.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 2012;44:694–8.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Kan Z, Zheng H, Liu X, Li S, Barbara TD, Gong Z, et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res. 2013;23:1422–33.Google Scholar
  15. 15.
    Aguilar F, Hussain SP, Cerutti P. Aflatoxin B1 induces the transversion of G– > T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc Natl Acad Sci U S A. 1993;90:8586–90.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Tornesello ML, Buonaguro L, Tatangelo F, Botti G, Izzo F, Buonaguro FM. Mutations in TP53, CTNNB1 and PIK3CA genes in hepatocellular carcinoma associated with hepatitis B and hepatitis C virus infections. Genomics. 2013;102:74–83.PubMedCrossRefGoogle Scholar
  17. 17.
    Hussain SP, Schwank J, Staib F, Wang XW, Harris CC. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene. 2007;26:2166–76.PubMedCrossRefGoogle Scholar
  18. 18.
    Matsui O, Kadoya M, Kameyama T, Yoshikawa J, Takashima T, Nakanuma Y, et al. Benign and malignant nodules in cirrhotic livers: distinction based on blood supply. Radiology. 1991;178:493–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg. 1972;175:409–16.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Zhan P, Qian Q, Yu L-K. Prognostic significance of vascular endothelial growth factor expression in hepatocellular carcinoma tissue: a meta-analysis. Hepatobiliary Surg Nutr. 2013;2:148–55.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Cook KM, Figg WD. Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin. 2010;60:222–43.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schütz G, et al. Regorafenib (BAY 73-4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 2011;129:245–55.PubMedCrossRefGoogle Scholar
  23. 23.
    Carlomagno F, Anaganti S, Guida T, Salvatore G, Troncone G, Wilhelm SM, et al. BAY 43-9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst. 2006;98:326–34.PubMedCrossRefGoogle Scholar
  24. 24.••
    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90. The SHARP trial: this multinational phase III establishes sorafenib as the first systemic therapy to demonstrate an overall survival benefit in advanced HCC patients.PubMedCrossRefGoogle Scholar
  25. 25.••
    Cheng A-L, Kang Y-K, Chen Z, Tsao C-J, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34. The Asia-Pacific trial: this is the correlate phase III study confirming the survival benefit of sorafenib in advanced HCC patients in the Asia-Pacific region. This population was distinct from the SHARP trial, in that it consisted of predominantly HBV-infected patients.PubMedCrossRefGoogle Scholar
  26. 26.••
    Marrero J, Lencioni R, Ye SL, Kudo M. Final analysis of GIDEON (Global Investigation of Therapeutic Decisions in Hepatocellular Carcinoma [HCC] and of Its Treatment with Sorafenib. J Clin Oncol. 2013;31(Suppl, abstr 4.126). This presentation of the final results from the GIDEON study supports the safety and efficacy of sorafenib in CP-B patients.Google Scholar
  27. 27.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.PubMedCrossRefGoogle Scholar
  28. 28.
    Bruix J, Sherman M, Llovet JM, Beaugrand M, Lencioni R, Burroughs AK, et al. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. J Hepatol. 2001;35:421–30.PubMedCrossRefGoogle Scholar
  29. 29.
    Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30:52–60.PubMedCrossRefGoogle Scholar
  30. 30.
    Gillmore R, Stuart S, Kirkwood A, Hameeduddin A, Woodward N, Burroughs AK, et al. EASL and mRECIST responses are independent prognostic factors for survival in hepatocellular cancer patients treated with transarterial embolization. J Hepatol. 2011;55:1309–16.PubMedCrossRefGoogle Scholar
  31. 31.
    Edeline J, Boucher E, Rolland Y, Vauléon E, Pracht M, Perrin C, et al. Comparison of tumor response by Response Evaluation Criteria in Solid Tumors (RECIST) and modified RECIST in patients treated with sorafenib for hepatocellular carcinoma. Cancer. 2012;118:147–56.PubMedCrossRefGoogle Scholar
  32. 32.•
    Llovet JM, Decaens T, Raoul J-L, Boucher E, Kudo M, Chang C, et al. Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study. J Clin Oncol. 2013;31:3509–16. This phase III study of brivanib in the second-line setting, following sorafenib failure, failed to achieve significance in overall survival benefit; however, the brivanib arm did show a longer-than-expected survival given the usual natural history of the disease.PubMedCrossRefGoogle Scholar
  33. 33.
    Johnson PJ, Qin S, Park J-W, Poon RTP, Raoul J-L, Philip PA, et al. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J Clin Oncol. 2013;31:3517–24.PubMedCrossRefGoogle Scholar
  34. 34.
    Cheng A-L, Kang Y-K, Lin D-Y, Park J-W, Kudo M, Qin S, et al. Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. J Clin Oncol. 2013;31:4067–75.PubMedCrossRefGoogle Scholar
  35. 35.
    Cainap C, Qin S, Huang WT, Chung IJ, Pan H. Phase III trial of linifanib versus sorafenib in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol. 2013;31(Suppl 4, abstr 249).Google Scholar
  36. 36.
    Boige V, Malka D, Bourredjem A, Dromain C, Baey C, Jacques N, et al. Efficacy, safety, and biomarkers of single-agent bevacizumab therapy in patients with advanced hepatocellular carcinoma. Oncologist. 2012;17:1063–72.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Zhu AX, Finn RS, Mulcahy M, Gurtler J, Sun W, Schwartz JD, et al. A Phase II and biomarker study of ramucirumab, a human monoclonal antibody targeting the VEGF receptor-2, as first-line monotherapy in patients with advanced hepatocellular cancer. Clin Cancer Res. 2013;19:6614–23.PubMedCrossRefGoogle Scholar
  38. 38.
    Goyal L, Muzumdar MD, Zhu AX. Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin Cancer Res. 2013;19:2310–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Zarnegar R, Michalopoulos GK. The many faces of hepatocyte growth factor: from hepatopoiesis to hematopoiesis. J Cell. 1995;129:1177–80.Google Scholar
  40. 40.
    Kaposi-Novak P, Lee J-S, Gòmez-Quiroz L, Coulouarn C, Factor VM, Thorgeirsson SS. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest. 2006;116:1582–95.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Osada S, Kanematsu M, Imai H, Goshima S. Clinical significance of serum HGF and c-Met expression in tumor tissue for evaluation of properties and treatment of hepatocellular carcinoma. Hepatogastroenterology. 2008;55:544–9.PubMedGoogle Scholar
  42. 42.
    Ang CS-P, Sun MY, Huitzil-Melendez DF, Chou JF-L, Capanu M, Jarnagin W, et al. c-MET and HGF mRNA expression in hepatocellular carcinoma: correlation with clinicopathological features and survival. Anticancer Res. 2013;33:3241–5.PubMedGoogle Scholar
  43. 43.••
    Santoro A, Rimassa L, Borbath I, Daniele B, Salvagni S, Van Laethem J-L, et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncol. 2013;14:55–63. This randomized phase II trial of tivantinib in the second-line setting showed a significant improvement in TTP in a preplanned subset analysis of MET-high patients. It is the basis for an ongoing phase III trial of tivantinib in MET-high proven advanced HCC patients.PubMedCrossRefGoogle Scholar
  44. 44.
    Katayama R, Aoyama A, Yamori T, Qi J, Oh-hara T, Song Y, et al. Cytotoxic activity of tivantinib (ARQ 197) is not due solely to c-MET inhibition. Cancer Res. 2013;73:3087–96.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Basilico C, Pennacchietti S, Vigna E, Chiriaco C, Arena S, Bardelli A, et al. Tivantinib (ARQ197) displays cytotoxic activity that is independent of its ability to bind MET. Clin Cancer Res. 2013;19:2381–92.PubMedCrossRefGoogle Scholar
  46. 46.
    Cohn AL, Kelley RK, Yang TS, Su WC, Verslype C. Activity of cabozantinib (XL184) in hepatocellular carcinoma patients (pts): results from a phase II randomized discontinuation trial (RDT). J Clin Oncol. 2012;30 (Suppl, abstr 4007).Google Scholar
  47. 47.
    Schiffer E, Housset C, Cacheux W, Wendum D, Desbois-Mouthon C, Rey C, et al. Gefitinib, an EGFR inhibitor, prevents hepatocellular carcinoma development in the rat liver with cirrhosis. Hepatology. 2005;41:307–14.PubMedCrossRefGoogle Scholar
  48. 48.
    O’Dwyer PJ, Giantonio BJ, Levy DE, Kauh JS. Gefitinib in advanced unresectable hepatocellular carcinoma: results from the Eastern Cooperative Oncology Group’s Study E1203. J Clin Oncol. 2006;24(Suppl abstr 4143).Google Scholar
  49. 49.
    Zhu AX, Rosmorduc O, Evans J, Ross P, Santoro A. SEARCH: a phase III, randomized, double-blind, placebo-controlled trial of sorafenib plus erlotinib in patients with hepatocellular carcinoma (HCC). Eur J Cancer. 2012; (ESMO, abstr 917).Google Scholar
  50. 50.
    Govindarajan R, Siegel E, Makhoul I, Williamson S. Bevacizumab and erlotinib in previously untreated inoperable and metastatic hepatocellular carcinoma. Am J Clin Oncol. 2013;36:254–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Hsu C-H, Kang Y-K, Yang T-S, Shun C-T, Shao Y-Y, Su W-C, et al. Bevacizumab with erlotinib as first-line therapy in Asian patients with advanced hepatocellular carcinoma: a multicenter phase II study. Oncology. 2013;85:44–52.PubMedCrossRefGoogle Scholar
  52. 52.
    Yau T, Wong H, Chan P, Yao TJ, Pang R, Cheung TT, et al. Phase II study of bevacizumab and erlotinib in the treatment of advanced hepatocellular carcinoma patients with sorafenib-refractory disease. Investig New Drugs. 2012;30:2384–90.CrossRefGoogle Scholar
  53. 53.
    Philip PA, Mahoney MR, Holen KD, Northfelt DW, Pitot HC, Picus J, et al. Phase 2 study of bevacizumab plus erlotinib in patients with advanced hepatocellular cancer. Cancer. 2012;118:2424–30.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Kaseb AO, Garrett-Mayer E, Morris JS, Xiao L, Lin E, Onicescu G, et al. Efficacy of bevacizumab plus erlotinib for advanced hepatocellular carcinoma and predictors of outcome: final results of a phase II trial. Oncology. 2012;82:67–74.PubMedCrossRefGoogle Scholar
  55. 55.
    Bekaii-Saab T, Markowitz J, Prescott N, Sadee W, Heerema N, Wei L, et al. A multi-institutional phase II study of the efficacy and tolerability of lapatinib in patients with advanced hepatocellular carcinomas. Clin Cancer Res. 2009;15:5895–901.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Zhu AX, Stuart K, Blaszkowsky LS, Muzikansky A, Reitberg DP, Clark JW, et al. Phase 2 study of cetuximab in patients with advanced hepatocellular carcinoma. Cancer. 2007;110:581–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Gruenwald V, Wilkens L, Gebel M, Greten TF. A phase II open-label study of cetuximab in unresectable hepatocellular carcinoma: final results. J Clin. 2007;25(18S:4598).Google Scholar
  58. 58.
    Treiber G. Treatment of advanced or metastatic hepatocellular cancer (HCC): Interim analysis of a single-arm phase II study of bevacizumab and RAD001. J Clin Oncol. 2010;28(Suppl, abstr 255).Google Scholar
  59. 59.
    Zhu AX, Abrams TA, Miksad R, Blaszkowsky LS, Meyerhardt JA, Zheng H, et al. Phase 1/2 study of everolimus in advanced hepatocellular carcinoma. Cancer. 2011;117:5094–102.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Shiah HS, Chen CY, Dai CY, Hsiao CF, Lin YJ, Su WC, et al. Randomised clinical trial: comparison of two everolimus dosing schedules in patients with advanced hepatocellular carcinoma. Aliment Pharmacol Ther. 2013;37:62–73.PubMedCrossRefGoogle Scholar
  61. 61.
    Knox JJ, Qin R, Strosberg JR. A Phase II trial of temsirolimus (TEM) and bevacizumab (BEV) in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol. 2012;30(Suppl, abstr 4099).Google Scholar
  62. 62.
    Chelis L, Deftereos S, Xenidis N. Bevacizumab plus temsirolimus as second-line treatment for advanced hepatocellular carcinoma (HCC). J Clin Oncol. 2012;(Suppl, abstr e14567).Google Scholar
  63. 63.
    Decaens T, Luciani A, Itti E, Hulin A. Phase II study of sirolimus in treatment-naive patients with advanced hepatocellular carcinoma. Digest Liver. 2012;44:610–6.Google Scholar
  64. 64.
    Chan SL, Yeo W. Targeted therapy of hepatocellular carcinoma: present and future. J Gastroenterol Hepatol. 2012;27:862–72.PubMedCrossRefGoogle Scholar
  65. 65.•
    Wang S-N, Chuang S-C, Lee K-T. Efficacy of sorafenib as adjuvant therapy to prevent early recurrence of hepatocellular carcinoma after curative surgery: A pilot study. Hepatol Res. 2014;44:523–31. This small pilot study comparing sorafenib following hepatic surgery to surgery alone demonstrated a potential role for sorafenib in the adjuvant setting.Google Scholar
  66. 66.•
    Lencioni R, Llovet JM, Han G, Tak WY, Yang J. Sorafenib or placebo in combination with transarterial chemoembolization (TACE) with doxorubicin-eluting beads (DEBDOX) for intermediate-stage hepatocellular. J Clin. 2012;30(Suppl 4, abstr LBA154). The SPACE trial: this randomized phase II trial showed a minimal but significant improvement in TTP with sorafenib when administered concurrently with TACE with doxorubicin-eluting beads.Google Scholar
  67. 67.•
    Sansonno D, Lauletta G, Russi S, Conteduca V, Sansonno L, Dammacco F. Transarterial chemoembolization plus sorafenib: a sequential therapeutic scheme for HCV-related intermediate-stage hepatocellular carcinoma: a randomized clinical trial. The Oncologist. 2012;17:359–66. This randomized phase II trial demonstrated significant improvement in TTP with sorafenib when administered sequentially following TACE in HCV-related HCC patients.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.•
    Kudo M, Imanaka K, Chida N, Nakachi K, Tak WY, Takayama T, et al. Phase III study of sorafenib after transarterial chemoembolisation in Japanese and Korean patients with unresectable hepatocellular carcinoma. Eur J Cancer. 2011;47:2117–27. In this phase III trial in Japan and South Korea, the addition of sorafenib following TACE failed to achieve signifcance when compared to placebo.PubMedCrossRefGoogle Scholar
  69. 69.
    Miyahara K, Nouso K, Morimoto Y, Takeuchi Y, Hagihara H, Kuwaki K, et al. Efficacy of sorafenib beyond first progression in patients with metastatic hepatocellular carcinoma. Hepatol Res. 2014;44:296–301.PubMedCrossRefGoogle Scholar
  70. 70.
    Rimassa L, Pressiani T, Boni C, Carnaghi C, Rota Caremoli E, Fagiuoli S, et al. A phase II randomized dose escalation trial of sorafenib in patients with advanced hepatocellular carcinoma. Oncologist. 2013;18:379–80.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Abou-Alfa GK, Johnson P, Knox JJ, Capanu M, Davidenko I, Lacava J, et al. Doxorubicin Plus Sorafenib vs Doxorubicin Alone in Patients With Advanced Hepatocellular Carcinoma: A Randomized Trial. JAMA. 2010;304:2154–60.PubMedCrossRefGoogle Scholar
  72. 72.
    Hsu CH, Yang TS, Hsu C, Toh HC, Epstein RJ, Hsiao L-T, et al. Efficacy and tolerability of bevacizumab plus capecitabine as first-line therapy in patients with advanced hepatocellular carcinoma. Br J Cancer. 2010;102:981–6.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Sun W, Sohal D, Haller DG, Mykulowycz K, Rosen M, Soulen MC, et al. Phase 2 trial of bevacizumab, capecitabine, and oxaliplatin in treatment of advanced hepatocellular carcinoma. Cancer. 2011;117:3187–92.PubMedCrossRefGoogle Scholar
  74. 74.
    Llovet JM, Peña CEA, Lathia CD, Shan M, Meinhardt G, Bruix J, et al. Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2012;18:2290–300.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.University of Pittsburgh Cancer InstitutePittsburghUSA

Personalised recommendations