Current Treatment Options in Oncology

, Volume 15, Issue 2, pp 147–156 | Cite as

Jak-2 Positive Myeloproliferative Neoplasms

Leukemia (JP Dutcher, Section Editor)

Opinion statement

Originally described by Dameshek in 1951, myeloproliferative disorders are today classified as myeloproliferative Neoplasms (MPNs) in WHO’s Classification of Tumors of Hematopoietic and Lymphoid Tissues. The term includes a range of conditions, [ie, BCR-ABL-positive chronic myelogenous leukemia (CML), chronic neutrophilic leukemia (CNL), polycythemia vera (PV), primary myelofibrosis (PMF), essential thromobocythemia (ET), chronic eosinophilic leukemia not otherwise specified (CEL-NOS), mastocytosis, and unclassifiable myeloproliferative neoplasm]. In the specific case of CML, a better understanding of the pathogenesis and pathophysiology of the disease has led to a targeted therapy. The presence of chromosome Philadelphia, t(9;22)(q34;11) results in the oncogene BCR-ABL, which characterizes the disease; this molecular rearrangement gives rise to a tyrosine-kinase, which in turn triggers the proliferation of the myeloid line through the activation of the signaling pathways downstream. Tyrosine-kinase inhibitors (TKIs) have altered the therapy and monitoring of CML patients and improved both their prognosis and quality of life. In 2005, various groups of investigators described a new point mutation of the gene JAK2 associated to MPNs. Although the presence of this mutation has led to a modification in the diagnostic criteria of these conditions, the impact of the use of JAK2 inhibitors on the prognosis and course of the disease continues to be controversial.

Keywords

Myeloproliferative neoplasms Chronic myelogenous meukemia (CML) Chronic neutrophilic leukemia (CNL) Polycythemia vera (PV) Primary myelofibrosis (PMF) Essential thromobocythemia JAK2 JAK2 inhibitors Ruxolitinib 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Pablo J. Muxí had travel/accommodations expenses covered or reimbursed by Novartis. Ana Carolina Oliver declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951;6:372–5.PubMedGoogle Scholar
  2. 2.
    Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO Classification of Tumours of Hematopoietic and Lymphoid Tissues. 4th ed. Lyon: WHO Press; 2008.Google Scholar
  3. 3.
    Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, et al. Cancer statistics. Cancer J Clin. 2004;54:8–29.CrossRefGoogle Scholar
  4. 4.
    Johansson P. Epidemiology of the myeloproliferative disorders polycythemia vera and essential thrombocytemia. Semin Thromb Hemost. 2006;32:171–3.PubMedGoogle Scholar
  5. 5.
    Johansson P, Kutti J, Andreasson B, Safai-Kutti S, Vilen L, Wedel H, et al. Trends in the incidence of chronic Philadelphia chromosome negative (Ph-) myeloproliferative disorders in the city of Goteborg, Sweden, during 1983-99. J Intern Med. 2004;256:161–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Mesa RA, Niblack J, Wadleigh M, Verstovsek S, Camoriano J, Barnes S, et al. The burden of fatigue and quality of life in myeloproliferative disorders (MPDs): an international Internet-based survey of 1179 MPD patients. Cancer. 2007;109:68.PubMedCrossRefGoogle Scholar
  7. 7.•
    Scherber R, Dueck AC, Johansson P, Barbui T, Barosi G, Vannucchi AM, et al. The Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF): international prospective validation and reliability trial in 402 patients. Blood. 2011;118:401. This study validates the QOL assessment form in MPN.Google Scholar
  8. 8.
    Emanuel RM, Dueck AC, Geyer HL, Kiladjian JJ, Slot S, Zweegman S, et al. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol. 2012;30:4098.PubMedCrossRefGoogle Scholar
  9. 9.•
    Tefferi A, Cervantes F, Mesa R, Passamonti F, Verstovsek S, Vannucchi AM, et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood. 2013;122:1395–8. This study revises response criteria in MPN.Google Scholar
  10. 10.
    Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science. 1960;142:1497.Google Scholar
  11. 11.
    Rowley JD. Letter. A new consistent abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–3.PubMedCrossRefGoogle Scholar
  12. 12.
    Bartram C, Klein A, Hagemeijer A, Agthoven T, Geurts van Kessel A, Bootsma D, et al. Translocation of c-abl oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukemia. Nature. 1983;306:277–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Groffen J, Stephenson JR, Heisterkamp N, Klein A, Bartram C, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, BCR, on chromosome 22. Cell. 1984;36:93–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Quintas Cardama A, Kantarjian H, Cortes J. Molecular biology and cytogenetics of chronic myeloid leukemia. Neoplastic Diseases of the Blood. 5th Ed. Springer. 2012;91–102.Google Scholar
  15. 15.
    Daley GQ, Van Etten RA, Baltimora D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990;247:824–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Druker B, Tamura S, Buchdunger E, Ohno S, Bagby G, Lydon N. Preclinical evaluation of a selective inhibitor of the ABL tyrosine kinase as a therapeutic agent for chronic myelogenous leukemia. ASH Annual Meeting Abstracts. Blood. 1995;601a. [Abstract 2392].Google Scholar
  17. 17.
    Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. For the International STI571 CML study group. N Engl J Med. 2002;346:645–54.PubMedCrossRefGoogle Scholar
  18. 18.
    O′Brien S, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, et al. Imatinib compared with interferon and low–dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348:994–1004.PubMedCrossRefGoogle Scholar
  19. 19.
    Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med. 2003;349:1423–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Vainshenker W, Constantinescu SN. A unique activation mutation in JAK2 (V617F) is at the origin of polycythemia vera and allows a new classification of myeloproliferative diseases. Hematology Am Soc Hematol Educ Program. Education Book January 1, vol 2005;2005;195–200.Google Scholar
  21. 21.
    James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythemia vera. Nature. 2005;434:1144–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90.PubMedCrossRefGoogle Scholar
  23. 23.
    Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.PubMedCrossRefGoogle Scholar
  24. 24.
    Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Cancer Genome Project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.PubMedCrossRefGoogle Scholar
  25. 25.
    Neubauer H, Cumano A, Müller M, Wu H, Huffstadt U, Pfeffer K. JAK2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998;93:397–409.PubMedCrossRefGoogle Scholar
  26. 26.
    Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, et al. JAK2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93:385–95.PubMedCrossRefGoogle Scholar
  27. 27.
    Staerk J, Constantinescu S. The JAK-STAT pathway and hematopoietic stem cells from the JAK2 V617F perspective. JAK-STAT. 2012;1:184–90.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Garcon L, Rivat C, James C, Lacout C, Camara-Clayette V, Ugo V, et al. Constitutive activation of STAT5 and BCL-xL overexpression can induce endogenous erythroid colony formation in human primary cells. Blood. 2006;108:1551–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Jones AV, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood. 2005;106:2162–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Vizmanos JL, Ormazabal C, Larrayoz MJ, Cross NC, Calasanz MJ. JAK2 V617F mutation in classic chronic myeloproliferative diseases: a report on a series of 349 patients. Leukemia. 2006;20:534–5.PubMedCrossRefGoogle Scholar
  31. 31.
    Ceesay M, Lea N, Ingram W, Westwood N, Gaken J, Mohamedali A, et al. The JAK2 V617Fmutation is rare in RARS but common in RARS-T. Leukemia. 2006;20:2060–1.PubMedCrossRefGoogle Scholar
  32. 32.
    Levine R, Loriaux M, Huntly B, Loh M, Beran M, Stoffregen E, et al. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood. 2005;106:3377–9.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Stijnis C, Kroes W, Balkassmi S, Marijt E, van Rossum A, Bakker E, et al. No evidence for JAK2(V617F) mutation in monoclonal B cells in 2 patients with polycythemia vera and concurrent monoclonal B cell disorder. Acta Haematol. 2012;128:183–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356:459–68.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Wang JY, Ai XF, Xu JQ, Li QH, Xu ZF, Qin TJ, et al. JAK2 exon 12 mutations in patients with Philadelphia (Ph) chromosome-negative myeloproliferative neoplasms. Zhonghua Xue Ye Xue Za Zhi. 2012;33:705–9.PubMedGoogle Scholar
  36. 36.
    Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006;108:3472–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Tiedt R, Hao-Shen H, Sobas MA, Looser R, Dirnhofer S, Schwaller J, et al. Ratio of mutant JAK2-V617Fto wild-type JAK2 determines the MPD phenotypesin transgenic mice. Blood. 2008;111:3931–40.PubMedCrossRefGoogle Scholar
  39. 39.
    Vannucchi A, Antonioli E, Guglielmelli P, Pardanani A, Tefferi A. Clinical correlates of JAK2V617F presence or allele burden in myeloproliferative neoplasms: a critical reappraisal. Leukemia. 2008;22:1299–307.PubMedCrossRefGoogle Scholar
  40. 40.
    Austin SK, Lambert JR. The JAK2V617F mutation and thrombosis. Br J Haematol. 2008;143:307–20.PubMedCrossRefGoogle Scholar
  41. 41.
    Alvarez-Larrán A, Bellosillo B, Martínez-Avilés L, Saumell S, Salar A, Abella E, et al. Postpolycythaemic myelofibrosis: frequency and risk factors for this complication in 116 patients. Br J Haematol. 2009;146:504–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Vannucchi AM, Antonioli E, Guglielmelli P, Rambaldi A, Barosi G, Marchioli R, et al. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood. 2007;110:840–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Finazzi G, Caruso V, Marchioli R, Capnist G, Chisesi T, Finelli C, et al. Acute leukemia in polycythemia vera: an analysis of 1638 patients enrolled in a prospective observational study. Blood. 2005;105:2664–70.PubMedCrossRefGoogle Scholar
  44. 44.
    Kreft A, Büche G, Ghalibafian M, Buhr T, Fischer T, Kirkpatrick CJ. The incidence of myelofibrosis in essential thrombocythaemia, polycythemia vera and chronic idiopathic myelofibrosis: a retrospective evaluation of sequential bone marrow biopsies. Acta Haematol. 2005;113:137–43.PubMedCrossRefGoogle Scholar
  45. 45.
    Tefferi A. Myelofibrosis with myeloid metaplasia. N Engl J Med. 2000;342:1255–65.PubMedCrossRefGoogle Scholar
  46. 46.
    Cross N. Genetic and epigenetic complexity in myeloproliferative neoplasms. Hematol Am Soc Hematol Educ Prog. 2011;2011:208–14.CrossRefGoogle Scholar
  47. 47.
    Klidajian JL. New approaches to therapy for myeloproliferative neoplasms. Hematol Educ. 2012;6:279–84.Google Scholar
  48. 48.••
    Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis N Engl J Med. 2010;363:1117–27. Analysis of safety and efficacy of ruxolitinib in MF.Google Scholar
  49. 49.••
    Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:799–807. Phase III study for ruxolitinib in MF.Google Scholar
  50. 50.••
    Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib vs best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–98. Phase III study for ruxolitinib in MF.Google Scholar
  51. 51.•
    Mesa RA, Gotlib J, Gupta V, Catalano JV, Deininger MW, Shields AL, et al. Effect of ruxolitinib therapy on myelofibrosis-related symptoms and other patient-reported outcomes in COMFORT-I: a randomized, double-blind, placebo-controlled trial. J Clin Oncol. 2013;31:1285–92. This study reports impact of ruxolitinib in QOL.Google Scholar
  52. 52.
    Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, Dipersio JF, et al. Efficacy, safety and survival with ruxolitinib treatment in patients with myelofibrosis: results of a median 2-year follow-up of COMFORT-I. Blood. 2013;122(25):4047–4053.Google Scholar
  53. 53.
    Cervantes F, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Sirulnik A, Stalbovskaya V, et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a Phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Haematol. 1 2013;98(12):1865–1871.Google Scholar
  54. 54.
    Harrison CN, Mesa RA, Kiladjian JJ, Al-Ali HK, Gisslinger H, Knoops L, et al. Health-related quality of life and symptoms in patients with myelofibrosis treated with ruxolitinib vs best available therapy. Br J Haematol. 2013;162:229–39.PubMedCrossRefGoogle Scholar
  55. 55.
    Kvasnicka HM, Thiele J, Bueso-Ramos CE, Hou K, Cortes JE, Kantarjian HM, et al. Exploratory analysis of the effect of ruxolitinib on bone marrow morphology in patients with myelofibrosis. ASCO Annual Meeting Abstracts. J Clin Oncol. 2013;31(Suppl):7030.Google Scholar
  56. 56.
    Vannucchi A, Kiladjian JJ, Gisslinger H, Passamonti F, Al-Ali HK, Sirulnik LA, et al. Reductions in JAK2V617F allele burden with ruxolitinib treatment in COMFORT-II, a Phase III study comparing the safety and efficacy of ruxolitinib to best available therapy (BAT). J Clin Oncol. 2012;30(Suppl). [Abstract 6514].Google Scholar
  57. 57.
    Verstovsek S, Passamonti P, Rambaldi A, Giovanni Barosi G, Peter J, Rosen PJ, et al. Long-term efficacy and safety results from a Phase II study of ruxolitinib in patients with polycythemia vera. ASH Annual Meeting Abstracts. Blood. 2012;120:804.CrossRefGoogle Scholar
  58. 58.
    Talpaz M, Jamieson C, Gabrail NY, Lebedinsky C, Gao G, Liu F, et al. A Phase II randomized dose-ranging study of the JAK2-selective inhibitor sar302503 in patients with intermediate-2 or high-risk primary myelofibrosis (MF), post-polycythemia vera (PV), MF, or post-essential thrombocythemia (ET) MF. ASH Annual Meeting Abstracts. Blood. 2012;120. [Abstract 2837].Google Scholar
  59. 59.
    Pardanani A, Gotlib J, Jamieson C, Cortes JE, Talpaz M., Stone R, et al. SAR302503: interim safety, efficacy and long-term impact on JAK2 V617F allele burden in a Phase I/II study in patients with myelofibrosis. ASH Annual Meeting Abstracts. Blood. 2011;118. [Abstract 3838].Google Scholar
  60. 60.
    Deeg HJ, Odenike O, Scott BL, Estrov Z, Cortes JE, Thomas DA, et al. Phase II study of SB1518, an orally available novel JAK2 inhibitor, in patients with myelofibrosis. J Clin Oncol. 2011;29(Suppl). [Abstract 6515].Google Scholar
  61. 61.
    Pardanani A, Gotlib J, Gupta V, Roberts AW, Wadleigh M, Sirhan S, et al. An expanded multicenter Phase I/II study of CYT387, a JAK- 1/2 inhibitor for the treatment of myelofibrosis. ASH Annual Meeting Abstracts. Blood. 2011;118. [Abstract 3849].Google Scholar
  62. 62.
    Pardanani AD, Caramazza D, George G, Lasho TL, Hogan WJ, Litzow MR, et al. Safety and efficacy of CYT387, a JAK-1/2 inhibitor, for the treatment of myelofibrosis. J Clin Oncol. 29:2011(Suppl). [Abstract 6514].Google Scholar
  63. 63.
    Verstovsek S, Mesa RA, Kloeker-Rhoades S, Giles JL, Pitou C, Jones E, et al. Phase I study of the JAK2 V617F Inhibitor, LY2784544, in patients with myelofibrosis (MF), polycythemia Vera (PV), and essential thrombocythemia (ET). ASH Annual Meeting Abstracts. Blood. 2011;118. [Abstract 2814].Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of HaematologyBritish HospitalMontevideoUruguay

Personalised recommendations