Current Treatment Options in Oncology

, Volume 15, Issue 1, pp 99–114 | Cite as

New Treatments for Bladder Cancer: When Will We Make Progress?

Genitourinary Cancers (W Oh, Section Editor)

Opinion statement

The prognosis and long-term survival for patients with metastatic urothelial carcinoma patients is poor. Traditionally, the mainstay of treatment has been combination chemotherapy with gemcitabine and cisplatin or with the classical M-VAC. Vinflunine has become an EMA-approved second-line option in Europe. Urothelial carcinomas contain genetic alteration in multiple genes that are potentially treated by targeted therapies. Recently, a number of these new therapies have been developed in this disease. But not one has been approved for clinical use in urothelial cancers. While clinical evaluation of these agents is still in its early days, some promising findings have begun to emerge. For example, everolimus demonstrated activity in those metastatic urothelial cancer patients who harbors TSC1 mutation. With the identification of the most relevant drug targets for tumors initiation and maintenance and the best way to assess drug candidates that may only account for a small fraction of patients, it is anticipated that the therapeutic arsenal for urothelial cancers will be expanded in the future.


Bladder cancer Targeted therapies Molecular markers Urothelial tumors 

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.PubMedCrossRefGoogle Scholar
  2. 2.•
    Bellmunt J, Choueiri TK, Fougeray R, Schutz FA, Salhi Y, Winquist E, et al. Prognostic factors in patients with advanced transitional cell carcinoma of the urothelial tract experiencing treatment failure with platinum-containing regimens. J Clin Oncol. 2010;28:1850–5. This study reports pretreatment prognostic factors for overall survival in patients with metastatic transitional cell carcinoma of the urothelial tract that experienced treatment failure with the first-line platinum-based regimen.PubMedCrossRefGoogle Scholar
  3. 3.
    Kamat AM, Hegarty PK, Gee JR, Clark PE, Svatek RS, Hegarty N, et al. ICUD-EAU International Consultation on Bladder Cancer 2012: screening, diagnosis, and molecular markers. Eur Urol. 2012;63:4–15.PubMedCrossRefGoogle Scholar
  4. 4.
    Sjodahl G, Lauss M, Gudjonsson S, Liedberg F, Hallden C, Chebil G, et al. A systematic study of gene mutations in urothelial carcinoma: inactivating mutations in TSC2 and PIK3R1. PLoS One. 2011;6:e18583.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Lindgren D, Sjodahl G, Lauss M, Staaf J, Chebil G, Lovgren K, et al. Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma. PLoS One. 2012;7:e38863.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Iyer G, Al-Ahmadie H, Schultz N, Hanrahan AJ, Ostrovnaya I, Balar AV, et al. Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J Clin Oncol. 2013;31:3133–40.PubMedCrossRefGoogle Scholar
  7. 7.
    Al-Ahmadie HA, Iyer G, Janakiraman M, Lin O, Heguy A, Tickoo SK, et al. Somatic mutation of fibroblast growth factor receptor-3 (FGFR3) defines a distinct morphological subtype of high-grade urothelial carcinoma. J Pathol. 2011;224:270–9.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Taylor BS, Barretina J, Socci ND, Decarolis P, Ladanyi M, Meyerson M, et al. Functional copy-number alterations in cancer. PLoS One. 2008;3:e3179.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Gui Y, Guo G, Huang Y, Hu X, Tang A, Gao S, et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet. 2011;43:875–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Solomon DA, Kim JS, Bondaruk J, Shariat SF, Wang ZF, Elkahloun AG, et al. Frequent truncating mutations of STAG2 in bladder cancer. Nat Genet. 2013; [Epub ahead of print]. doi: 10.1038/ng.2800.
  11. 11.••
    von der Maase H, Sengelov L, Roberts JT, Ricci S, Dogliotti L, Oliver T, et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol. 2005;23:4602–8. This study comparing gemcitabine- cisplatin with M-VAC demonstrated similar levels of activity in the metastatic setting, but with an improved safety profile vs M-VAC.PubMedCrossRefGoogle Scholar
  12. 12.
    Sternberg CN, de Mulder P, Schornagel JH, Theodore C, Fossa SD, van Oosterom AT, et al. Seven year update of an EORTC phase III trial of high-dose intensity M-VAC chemotherapy and G-CSF vs classic M-VAC in advanced urothelial tract tumours. Eur J Cancer. 2006;42:50–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Bamias A, Karadomou A, Lampaki S, et al. Prospective, randomized Phase III study comparing two intensified regimens (methothexate/vinblastine/doxorrubicin hydrochloride/cisplatin (MVAC) vs gemcitabine/cisplatin) in patients with inoperable or recurrent urothelial cancer. 2011 ASCO Annual Meeting Abstracts; J Clin Oncol 29:15s, 2011 (suppl, abstr 4510).Google Scholar
  14. 14.
    Bellmunt J, von der Maase H, Mead GM, Skoneczna I, De Santis M, Daugaard G, et al. Randomized phase III study comparing paclitaxel/cisplatin/gemcitabine and gemcitabine/cisplatin in patients with locally advanced or metastatic urothelial cancer without prior systemic therapy: EORTC Intergroup Study 30987. J Clin Oncol. 2012;30:1107–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Sternberg CN, Skoneczna IA, Castellano D, Theodore C, Blais N, Voog E, et al. Larotaxel with cisplatin in the first-line treatment of locally advanced/metastatic urothelial tract or bladder cancer: a randomized, active-controlled, phase III trial (CILAB). Oncology. 2013;85:208–15.PubMedCrossRefGoogle Scholar
  16. 16.
    De Santis M, Bellmunt J, Mead G, Kerst JM, Leahy M, Maroto P, et al. Randomized phase II/III trial assessing gemcitabine/carboplatin and methotrexate/carboplatin/vinblastine in patients with advanced urothelial cancer who are unfit for cisplatin-based chemotherapy: EORTC study 30986. J Clin Oncol. 2012;30:191–9.PubMedCrossRefGoogle Scholar
  17. 17.
    De Santis M. Preliminary data on feasibility of vinflunine (VFL)-based combinations as 1st line in CDDP-unfit patients (pts) with urothelial carcinoma (UC): VFL/Gemcitabine vs. VFL/CBDCA in a randomized international phase II trial (JASINT 1). . ECCO meeting 2013; [abstract # 2703].Google Scholar
  18. 18.
    Pronzato P, Vigani A, Pensa F, Vanoli M, Tani F, Vaira F. Second line chemotherapy with ifosfamide as outpatient treatment for advanced bladder cancer. Am J Clin Oncol. 1997;20:519–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Lorusso V, Pollera CF, Antimi M, Luporini G, Gridelli C, Frassineti GL, et al. A phase II study of gemcitabine in patients with transitional cell carcinoma of the urinary tract previously treated with platinum. Italian Co-operative Group on Bladder Cancer. Eur J Cancer. 1998;34:1208–12.PubMedCrossRefGoogle Scholar
  20. 20.
    Shidhar SS. A phase II study of single-agent nab-paclitaxel as second-line therapy in patients with metastatic urothelial carcinoma. 2010 ASCO Annual Meeting Abstracts; J Clin Oncol 28:15s, 2010 (suppl, abstr TPS231).Google Scholar
  21. 21.
    Bellmunt J, Theodore C, Demkov T, Komyakov B, Sengelov L, Daugaard G, et al. Phase III trial of vinflunine plus best supportive care compared with best supportive care alone after a platinum-containing regimen in patients with advanced transitional cell carcinoma of the urothelial tract. J Clin Oncol. 2009;27:4454–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Dominguez-Escrig JL, Kelly JD, Neal DE, King SM, Davies BR. Evaluation of the therapeutic potential of the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib in preclinical models of bladder cancer. Clin Cancer Res. 2004;10:4874–84.PubMedCrossRefGoogle Scholar
  23. 23.
    Nagasawa J, Mizokami A, Koshida K, Yoshida S, Naito K, Namiki M. Novel HER2 selective tyrosine kinase inhibitor, TAK-165, inhibits bladder, kidney and androgen-independent prostate cancer in vitro and in vivo. Int J Urol. 2006;13:587–92.PubMedCrossRefGoogle Scholar
  24. 24.
    Nutt JE, Lazarowicz HP, Mellon JK, Lunec J. Gefitinib ('Iressa', ZD1839) inhibits the growth response of bladder tumour cell lines to epidermal growth factor and induces TIMP2. Br J Cancer. 2004;90:1679–85.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Lichtner RB, Wiedemuth M, Noeske-Jungblut C, Schirrmacher V. Rapid effects of EGF on cytoskeletal structures and adhesive properties of highly metastatic rat mammary adenocarcinoma cells. Clin Exp Metastasis. 1993;11:113–25.PubMedCrossRefGoogle Scholar
  26. 26.
    Petrylak DP, Tangen CM, Van Veldhuizen Jr PJ, Goodwin JW, Twardowski PW, Atkins JN, et al. Results of the Southwest Oncology Group phase II evaluation (study S0031) of ZD1839 for advanced transitional cell carcinoma of the urothelium. BJU Int. 2010;105:317–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Philips GK, Halabi S, Sanford BL, Bajorin D, Small EJ. A phase II trial of cisplatin (C), gemcitabine (G) and gefitinib for advanced urothelial tract carcinoma: results of Cancer and Leukemia Group B (CALGB) 90102. Ann Oncol. 2009;20:1074–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Pea G. Randomized phase II trial of gemcitabine/cisplatin (GC) with or without cetuximab (CET) in patients (pts) with advanced urothelial carcinoma (UC) [abstract]. J Clin Oncol. 2012;30(Suppl):a4506.Google Scholar
  29. 29.
    Wong YN, Litwin S, Vaughn D, Cohen S, Plimack ER, Lee J, et al. Phase II trial of cetuximab with or without paclitaxel in patients with advanced urothelial tract carcinoma. J Clin Oncol. 2012;30:3545–51.PubMedCrossRefGoogle Scholar
  30. 30.
    Pruthi RS, Nielsen M, Heathcote S, Wallen EM, Rathmell WK, Godley P, et al. A phase II trial of neoadjuvant erlotinib in patients with muscle-invasive bladder cancer undergoing radical cystectomy: clinical and pathological results. BJU Int. 2010;106:349–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Black PC, Brown GA, Inamoto T, Shrader M, Arora A, Siefker-Radtke AO, et al. Sensitivity to epidermal growth factor receptor inhibitor requires E-cadherin expression in urothelial carcinoma cells. Clin Cancer Res. 2008;14:1478–86.PubMedCrossRefGoogle Scholar
  32. 32.
    Blehm KN, Spiess PE, Bondaruk JE, Dujka ME, Villares GJ, Zhao YJ, et al. Mutations within the kinase domain and truncations of the epidermal growth factor receptor are rare events in bladder cancer: implications for therapy. Clin Cancer Res. 2006;12:4671–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Lae M, Couturier J, Oudard S, Radvanyi F, Beuzeboc P, Vieillefond A. Assessing HER2 gene amplification as a potential target for therapy in invasive urothelial bladder cancer with a standardized methodology: results in 1005 patients. Ann Oncol. 2010;21:815–9.PubMedCrossRefGoogle Scholar
  34. 34.•
    Hussain MH, MacVicar GR, Petrylak DP, Dunn RL, Vaishampayan U, Lara Jr PN, et al. Trastuzumab, paclitaxel, carboplatin, and gemcitabine in advanced human epidermal growth factor receptor-2/neu-positive urothelial carcinoma: results of a multicenter phase II National Cancer Institute trial. J Clin Oncol. 2007;25:2218–24. This phase II trial reports the safety and efficacy (response rates, time to disease progression, survival) of trastuzumab, carboplatin, gemcitabine, and paclitaxel in HER2-positive advanced urothelial carcinoma patients.PubMedCrossRefGoogle Scholar
  35. 35.
    Beuzeboc P et al. Trastuzumab (T) combined with standard chemotherapy in HER + metastatic bladder cancer (BC) patients: interim safety results of a prospective randomized phase II study [abstract]. J Clin Oncol. 2007;25(Suppl):a15565.Google Scholar
  36. 36.
    US National Library of Medicine. [online], 2013.
  37. 37.
    US National Library of Medicine. [online], < 2013.
  38. 38.
    Wulfing C, Machiels JP, Richel DJ, Grimm MO, Treiber U, De Groot MR, et al. A single-arm, multicenter, open-label phase 2 study of lapatinib as the second-line treatment of patients with locally advanced or metastatic transitional cell carcinoma. Cancer. 2009;115:2881–90.PubMedCrossRefGoogle Scholar
  39. 39.
    US National Library of Medicine. [online], 2012.
  40. 40.
    di Martino E, Tomlinson DC, Knowles MA. A Decade of FGF Receptor research in bladder cancer: past, present, and future challenges. Adv Urol. 2012:429213.Google Scholar
  41. 41.
    Lamont FR, Tomlinson DC, Cooper PA, Shnyder SD, Chester JD, Knowles MA. Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma growth in vitro and in vivo. Br J Cancer. 2011;104:75–82.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Milowsky Mea. Final results of a multicenter, open-label phase II trial of dovitinib (TKI258) in patients with advanced urothelial carcinoma with either mutated or nonmutated FGFR3 [abstract]. J Clin Oncol. 2013;31:a255Google Scholar
  43. 43.
    US National Library of Medicine. [online], 2013.
  44. 44.
    Williams SV, Hurst CD, Knowles MA. Oncogenic FGFR3 gene fusions in bladder cancer. Hum Mol Genet. 2013;22:795–803.PubMedCrossRefGoogle Scholar
  45. 45.
    Rochester MA, Patel N, Turney BW, Davies DR, Roberts IS, Crew J, et al. The type 1 insulin-like growth factor receptor is over-expressed in bladder cancer. BJU Int. 2007;100:1396–401.PubMedCrossRefGoogle Scholar
  46. 46.
    McKian KP, Haluska P. Cixutumumab. Expert Opin Investig Drugs. 2009;18:1025–33.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Platt FM, Hurst CD, Taylor CF, Gregory WM, Harnden P, Knowles MA. Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clin Cancer Res. 2009;15:6008–17.PubMedCrossRefGoogle Scholar
  48. 48.
    Lopez-Knowles E, Hernandez S, Malats N, Kogevinas M, Lloreta J, Carrato A, et al. PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res. 2006;66:7401–4.PubMedCrossRefGoogle Scholar
  49. 49.
    US National Library of Medicine. [online], 2013.
  50. 50.
    Munster P. PI3K kinase inhibitor GSK2126458 (GSK458): clinical activity in select patient (PT) populations defined by predictive markers (study P3K112826) [abstract]. Ann Oncol. 2012;23:a4420.Google Scholar
  51. 51.
    Hansel DE, Platt E, Orloff M, Harwalker J, Sethu S, Hicks JL, et al. Mammalian target of rapamycin (mTOR) regulates cellular proliferation and tumor growth in urothelial carcinoma. Am J Pathol. 2010;176:3062–72.PubMedCrossRefGoogle Scholar
  52. 52.
    Seront E, Rottey S, Sautois B, Kerger J, D'Hondt LA, Verschaeve V, et al. Phase II study of everolimus in patients with locally advanced or metastatic transitional cell carcinoma of the urothelial tract: clinical activity, molecular response, and biomarkers. Ann Oncol. 2012;23:2663–70.PubMedCrossRefGoogle Scholar
  53. 53.
    Milowsky MI, Iyer G, Regazzi AM, Al-Ahmadie H, Gerst SR, Ostrovnaya I, et al. Phase II study of everolimus in metastatic urothelial cancer. BJU Int. 2013;112:462–70.PubMedCrossRefGoogle Scholar
  54. 54.••
    Iyer G, Hanrahan AJ, Milowsky MI, Al-Ahmadie H, Scott SN, Janakiraman M, et al. Genome sequencing identifies a basis for everolimus sensitivity. Science. 2012;338:221. This study points out promising clinical activity observed especially in patients harboring TSC1 mutations.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    US National Library of Medicine. [online], 2013.
  56. 56.
    US National Library of Medicine. [online], 2013.
  57. 57.
    US National Library of Medicine. [online], 2013.
  58. 58.
    US National Library of Medicine. [online], 2013.
  59. 59.
    Kopparapu PK, Boorjian SA, Robinson BD, Downes M, Gudas LJ, Mongan NP, et al. Expression of VEGF and its receptors VEGFR1/VEGFR2 is associated with invasiveness of bladder cancer. Anticancer Res. 2013;33:2381–90.PubMedGoogle Scholar
  60. 60.
    Inoue K, Slaton JW, Kim SJ, Perrotte P, Eve BY, Bar-Eli M, et al. Interleukin 8 expression regulates tumorigenicity and metastasis in human bladder cancer. Cancer Res. 2000;60:2290–9.PubMedGoogle Scholar
  61. 61.
    Afonso J, Santos LL, Amaro T, Lobo F, Longatto-Filho A. The aggressiveness of urothelial carcinoma depends to a large extent on lymphovascular invasion–the prognostic contribution of related molecular markers. Histopathology. 2009;55:514–24.PubMedCrossRefGoogle Scholar
  62. 62.
    Hahn NM, Stadler WM, Zon RT, Waterhouse D, Picus J, Nattam S, et al. Phase II trial of cisplatin, gemcitabine, and bevacizumab as first-line therapy for metastatic urothelial carcinoma: Hoosier Oncology Group GU 04–75. J Clin Oncol. 2011;29:1525–30.PubMedCrossRefGoogle Scholar
  63. 63.
    US National Library of Medicine. [online], 2013.
  64. 64.
    Dreicer R, Li H, Stein M, DiPaola R, Eleff M, Roth BJ, et al. Phase 2 trial of sorafenib in patients with advanced urothelial cancer: a trial of the Eastern Cooperative Oncology Group. Cancer. 2009;115:4090–5.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Sridhar SS, Winquist E, Eisen A, Hotte SJ, McWhirter E, Tannock IF, et al. A phase II trial of sorafenib in first-line metastatic urothelial cancer: a study of the PMH Phase II Consortium. Invest New Drugs. 2011;29:1045–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Sonpavde G, Periman PO, Bernold D, Weckstein D, Fleming MT, Galsky MD, et al. Sunitinib malate for metastatic castration-resistant prostate cancer following docetaxel-based chemotherapy. Ann Oncol. 2010;21:319–24.PubMedCrossRefGoogle Scholar
  67. 67.
    Bellmunt J, Gonzalez-Larriba JL, Prior C, Maroto P, Carles J, Castellano D, et al. Phase II study of sunitinib as first-line treatment of urothelial cancer patients ineligible to receive cisplatin-based chemotherapy: baseline interleukin-8 and tumor contrast enhancement as potential predictive factors of activity. Ann Oncol. 2011;22:2646–53.PubMedCrossRefGoogle Scholar
  68. 68.
    Gallagher DJ, Al-Ahmadie H, Ostrovnaya I, Gerst SR, Regazzi A, Garcia-Grossman I, et al. Sunitinib in urothelial cancer: clinical, pharmacokinetic, and immunohistochemical study of predictors of response. Eur Urol. 2011;60:344–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Galsky MD, Hahn NM, Powles T, Hellerstedt BA, Lerner SP, Gardner TA, et al. Gemcitabine, cisplatin, and sunitinib for metastatic urothelial carcinoma and as preoperative therapy for muscle-invasive bladder cancer. Clin Genitourin Cancer. 2013;11:175–81.PubMedCrossRefGoogle Scholar
  70. 70.
    Necchi A, Mariani L, Zaffaroni N, Schwartz LH, Giannatempo P, Crippa F, et al. Pazopanib in advanced and platinum-resistant urothelial cancer: an open-label, single group, phase 2 trial. Lancet Oncol. 2012;13:810–6.PubMedCrossRefGoogle Scholar
  71. 71.
    US National Library of Medicine. [online], 2013.
  72. 72.
    US National Library of Medicine. [online], 2013.
  73. 73.
    Choueiri TK, Ross RW, Jacobus S, Vaishampayan U, Yu EY, Quinn DI, et al. Double-blind, randomized trial of docetaxel plus vandetanib vs docetaxel plus placebo in platinum-pretreated metastatic urothelial cancer. J Clin Oncol. 2012;30:507–12.PubMedCrossRefGoogle Scholar
  74. 74.
    Bottaro DP, Liotta LA. Cancer: out of air is not out of action. Nature. 2003;423:593–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Cheng HL, Trink B, Tzai TS, Liu HS, Chan SH, Ho CL, et al. Overexpression of c-met as a prognostic indicator for transitional cell carcinoma of the urinary bladder: a comparison with p53 nuclear accumulation. J Clin Oncol. 2002;20:1544–50.PubMedCrossRefGoogle Scholar
  76. 76.
    Sanchez-Carbayo M, Socci ND, Lozano JJ, Haab BB, Cordon-Cardo C. Profiling bladder cancer using targeted antibody arrays. Am J Pathol. 2006;168:93–103.PubMedCrossRefGoogle Scholar
  77. 77.
    Sanchez-Carbayo M, Socci ND, Lozano J, Saint F, Cordon-Cardo C. Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol. 2006;24:778–89.PubMedCrossRefGoogle Scholar
  78. 78.
    Apolo AB, Cecchi F, et al. Preclinical and correlative studies of cabozantinib (XL184) in urothelial cancer (UC). J Clin Oncol. 2013;31.Google Scholar
  79. 79.
    US National Library of Medicine. [online], <> 2012.
  80. 80.
    Richardson PG, Mitsiades CS, Laubach JP, Lonial S, Chanan-Khan AA, Anderson KC. Inhibition of heat shock protein 90 (HSP90) as a therapeutic strategy for the treatment of myeloma and other cancers. Br J Haematol. 2011;152:367–79.PubMedGoogle Scholar
  81. 81.
    Kamada M, So A, Muramaki M, Rocchi P, Beraldi E, Gleave M. Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. Mol Cancer Ther. 2007;6:299–308.PubMedCrossRefGoogle Scholar
  82. 82.
    Kanagasabai R, Karthikeyan K, Vedam K, Qien W, Zhu Q, Ilangovan G. Hsp27 protects adenocarcinoma cells from UV-induced apoptosis by Akt and p21-dependent pathways of survival. Mol Cancer Res. 2010;8:1399–412.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Concannon CG, Gorman AM, Samali A. On the role of Hsp27 in regulating apoptosis. Apoptosis. 2003;8:61–70.PubMedCrossRefGoogle Scholar
  84. 84.
    Garg M, Kanojia D, Seth A, Kumar R, Gupta A, Surolia A, et al. Heat-shock protein 70–2 (HSP70-2) expression in bladder urothelial carcinoma is associated with tumor progression and promotes migration and invasion. Eur J Cancer. 2010;46:207–15.PubMedCrossRefGoogle Scholar
  85. 85.
    US National Library of Medicine. [online], (2013). 2013.
  86. 86.
    US National Library of Medicine. [online], 2013.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins UniversityBaltimoreUSA
  2. 2.Harvard Medical SchoolDana Farber Cancer InstituteBostonUSA

Personalised recommendations