Current Treatment Options in Oncology

, Volume 14, Issue 4, pp 553–567 | Cite as

Treatment of Brain Metastases in Lung Cancer: Strategies to Avoid/Reduce Late Complications of Whole Brain Radiation Therapy

Lung Cancer (HA Wakelee, Section Editor)

Opinion statement

Brain metastases occur in 20-40 % of lung cancer patients. The use of whole brain radiation therapy (WBRT) has been shown to ameliorate many neurological symptoms, facilitate corticosteroid reduction, enhance quality of life (QOL), and prolong survival. The acute and early delayed side effects of WBRT are generally mild and inconsequential, whereas late complications often are progressive, irreversible, and may have a profound effect on neurocognitive function and QOL. Nevertheless, WBRT remains the cornerstone for treatment of multiple brain metastases due to its efficacy and the paucity of other treatment options. In avoidance of WBRT and its potential toxicity, patients of good performance status and ≤3 metastases may be treated reasonably with focal therapy alone (surgery or radiosurgery) without a compromise in survival. In patients with multiple brain metastases and those undergoing prophylactic cranial irradiation (PCI), established methods to mitigate the late complications of WBRT include total dose observation, dose per fraction restrictions, and avoidance of concomitant chemotherapy. Current areas of active research that hold great potential for benefit include hippocampal-sparing radiotherapy and the use of neuroprotective agents.

Keywords

Whole brain radiation therapy Brain metastases Neurocognitive impairment Quality of life Neuroprotection Hippocampus 

Notes

Conflict of Interest

Mark G. Shaw declares that he has no conflict of interest.

David L. Ball has board membership with Boehringer-Ingelheim, Pfizer, and Lilly Oncology and received payment for the development of educational presentations from Lilly Oncology and Pfizer.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as:• Of importance ••Of major importance

  1. 1.
    U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2009 Incidence and Mortality Web-based Report. Available at http://www.cdc.gov/cancer/lung/statistics/. Accessed July 2013.
  2. 2.
    Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol. 2004;22(14):2865–72. doi: 10.1200/JCO.2004.12.149.PubMedCrossRefGoogle Scholar
  3. 3.
    Schouten LJ, Rutten J, Huveneers HA, Twijnstra A. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer. 2002;94(10):2698–705.PubMedCrossRefGoogle Scholar
  4. 4.
    Nugent JL, Bunn Jr PA, Matthews MJ, Ihde DC, Cohen MH, Gazdar A, et al. CNS metastases in small cell bronchogenic carcinoma: increasing frequency and changing pattern with lengthening survival. Cancer. 1979;44(5):1885–93.PubMedCrossRefGoogle Scholar
  5. 5.
    Shi AA, Digumarthy SR, Temel JS, Halpern EF, Kuester LB, Aquino SL. Does initial staging or tumor histology better identify asymptomatic brain metastases in patients with non-small cell lung cancer? J Thorac Oncol. 2006;1(3):205–10.PubMedGoogle Scholar
  6. 6.
    Smedby KE, Brandt L, Backlund ML, Blomqvist P. Brain metastases admissions in Sweden between 1987 and 2006. Br J Cancer. 2009;101(11):1919–24. doi: 10.1038/sj.bjc.6605373.PubMedCrossRefGoogle Scholar
  7. 7.
    Hirsh V. Systemic therapies in metastatic non-small-cell lung cancer with emphasis on targeted therapies: the rational approach. Curr Oncol. 2010;17(2):13–23.PubMedCrossRefGoogle Scholar
  8. 8.
    Zimm S, Wampler GL, Stablein D, Hazra T, Young HF. Intracerebral metastases in solid-tumor patients: natural history and results of treatment. Cancer. 1981;48(2):384–94.PubMedCrossRefGoogle Scholar
  9. 9.
    Posner JB. Management of central nervous system metastases. Semin Oncol. 1977;4(1):81–91.PubMedGoogle Scholar
  10. 10.
    Sheline GE, Wara WM, Smith V. Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys. 1980;6(9):1215–28.PubMedCrossRefGoogle Scholar
  11. 11.
    Tofilon PJ, Fike JR. The radioresponse of the central nervous system: a dynamic process. Radiat Res. 2000;153(4):357–70.PubMedCrossRefGoogle Scholar
  12. 12.
    Crossen JR, Garwood D, Glatstein E, Neuwelt EA. Neurobehavioral sequelae of cranial irradiation in adults: a review of radiation-induced encephalopathy. J Clin Oncol. 1994;12(3):627–42.PubMedGoogle Scholar
  13. 13.
    DeAngelis LM, Delattre JY, Posner JB. Radiation-induced dementia in patients cured of brain metastases. Neurology. 1989;39(6):789–96.PubMedCrossRefGoogle Scholar
  14. 14.
    Aoyama H, Tago M, Kato N, Toyoda T, Kenjyo M, Hirota S, et al. Neurocognitive function of patients with brain metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int J Radiat Oncol Biol Phys. 2007;68(5):1388–95. doi: 10.1016/j.ijrobp.2007.03.048.PubMedCrossRefGoogle Scholar
  15. 15.
    Meyers CA, Brown PD. Role and relevance of neurocognitive assessment in clinical trials of patients with CNS tumors. J Clin Oncol. 2006;24(8):1305–9. doi: 10.1200/JCO.2005.04.6086.PubMedCrossRefGoogle Scholar
  16. 16.
    Gondi V, Paulus R, Bruner DW, Meyers CA, Gore EM, Wolfson A, et al. Decline in tested and self-reported cognitive functioning after prophylactic cranial irradiation for lung cancer: pooled secondary analysis of radiation therapy oncology group randomized trials 0212 and 0214. Int J Radiat oncol biol Phys. 2013;86(4):656–64. doi: 10.1016/j.ijrobp.2013.02.033.PubMedCrossRefGoogle Scholar
  17. 17.
    Meyers CA, Wefel JS. The use of the mini-mental state examination to assess cognitive functioning in cancer trials: no ifs, ands, buts, or sensitivity. J Clin Oncol Off J Am Soc Clin Oncol. 2003;21(19):3557–8. doi: 10.1200/JCO.2003.07.080.CrossRefGoogle Scholar
  18. 18.
    Liu R, Page M, Solheim K, Fox S, Chang SM. Quality of life in adults with brain tumors: current knowledge and future directions. Neuro-Oncol. 2009;11(3):330–9. doi: 10.1215/15228517-2008-093.PubMedCrossRefGoogle Scholar
  19. 19.
    Scoccianti S, Detti B, Cipressi S, Iannalfi A, Franzese C, Biti G. Changes in neurocognitive functioning and quality of life in adult patients with brain tumors treated with radiotherapy. J Neuro-Oncol. 2012;108(2):291–308. doi: 10.1007/s11060-012-0821-8.CrossRefGoogle Scholar
  20. 20.•
    Tallet AV, Azria D, Barlesi F, Spano JP, Carpentier AF, Goncalves A, et al. Neurocognitive function impairment after whole brain radiotherapy for brain metastases: actual assessment. Radiat Oncol. 2012;7:77. doi: 10.1186/1748-717X-7-77. This concise paper is a review of current literature on radiation-induced neurocognitive impairment with an exploration of different assessment techniques. The paper also explores the differences between therapeutic and prophylactic cranial irradiation. PubMedCrossRefGoogle Scholar
  21. 21.
    Regine WF, Scott C, Murray K, Curran W. Neurocognitive outcome in brain metastases patients treated with accelerated-fractionation vs. accelerated-hyperfractionated radiotherapy: an analysis from Radiation Therapy Oncology Group Study 91-04. Int J Radiat Oncol Biol Phys. 2001;51(3):711–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Gregor A, Cull A, Stephens RJ, Kirkpatrick JA, Yarnold JR, Girling DJ, et al. Prophylactic cranial irradiation is indicated following complete response to induction therapy in small cell lung cancer: results of a multicentre randomised trial. United Kingdom Coordinating Committee for Cancer Research (UKCCCR) and the European Organization for Research and Treatment of Cancer (EORTC). Eur J Cancer. 1997;33(11):1752–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Komaki R, Meyers CA, Shin DM, Garden AS, Byrne K, Nickens JA, et al. Evaluation of cognitive function in patients with limited small cell lung cancer prior to and shortly following prophylactic cranial irradiation. Int J Radiat Oncol Biol Phys. 1995;33(1):179–82. doi: 10.1016/0360-3016(95)00026-U.PubMedCrossRefGoogle Scholar
  24. 24.
    Collins B, Mackenzie J, Stewart A, Bielajew C, Verma S. Cognitive effects of hormonal therapy in early stage breast cancer patients: a prospective study. Psycho-Oncol. 2009;18(8):811–21. doi: 10.1002/pon.1453.CrossRefGoogle Scholar
  25. 25.
    Hodgson KD, Hutchinson AD, Wilson CJ, Nettelbeck T. A meta-analysis of the effects of chemotherapy on cognition in patients with cancer. Cancer Treat Rev. 2013;39(3):297–304. doi: 10.1016/j.ctrv.2012.11.001.PubMedCrossRefGoogle Scholar
  26. 26.
    Newcomer JW, Craft S, Hershey T, Askins K, Bardgett ME. Glucocorticoid-induced impairment in declarative memory performance in adult humans. J Neurosci: Off J Soc Neurosci. 1994;14(4):2047–53.Google Scholar
  27. 27.
    Zacny JP, Gutierrez S. Characterizing the subjective, psychomotor, and physiological effects of oral oxycodone in non-drug-abusing volunteers. Psychopharmacology. 2003;170(3):242–54. doi: 10.1007/s00213-003-1540-9.PubMedCrossRefGoogle Scholar
  28. 28.
    Keime-Guibert F, Napolitano M, Delattre JY. Neurological complications of radiotherapy and chemotherapy. J Neurol. 1998;245(11):695–708.PubMedCrossRefGoogle Scholar
  29. 29.•
    Soussain C, Ricard D, Fike JR, Mazeron JJ, Psimaras D, Delattre JY. CNS complications of radiotherapy and chemotherapy. Lancet. 2009;374(9701):1639–51. doi: 10.1016/S0140-6736(09)61299-X. This paper describes in great detail the treatment induced neurological complications of radiotherapy, chemotherapy, and combined treatment and the pathophysiological basis of these injuries. PubMedCrossRefGoogle Scholar
  30. 30.
    Belka C, Budach W, Kortmann RD, Bamberg M. Radiation induced CNS toxicity–molecular and cellular mechanisms. Br J Cancer. 2001;85(9):1233–9. doi: 10.1054/bjoc.2001.2100.PubMedCrossRefGoogle Scholar
  31. 31.••
    Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD. Radiation-induced brain injury: a review. Front Oncol. 2012;2:73. doi: 10.3389/fonc.2012.00073. This review provides excellent coverage of the theories of radiation-induced brain injury and the pathophysiological mechanisms behind injury. Potential targets for ameliorating injury are discussed. PubMedCrossRefGoogle Scholar
  32. 32.
    Arriagada R, Le Chevalier T, Borie F, Riviere A, Chomy P, Monnet I, et al. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. J Natl Cancer Inst. 1995;87(3):183–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Sun A, Bae K, Gore EM, Movsas B, Wong SJ, Meyers CA, et al. Phase III trial of prophylactic cranial irradiation compared with observation in patients with locally advanced non-small-cell lung cancer: neurocognitive and quality-of-life analysis. J Clin Oncol. 2011;29(3):279–86. doi: 10.1200/JCO.2010.29.6053.PubMedCrossRefGoogle Scholar
  34. 34.
    Le Pechoux C, Laplanche A, Faivre-Finn C, Ciuleanu T, Wanders R, Lerouge D, et al. Clinical neurological outcome and quality of life among patients with limited small-cell cancer treated with two different doses of prophylactic cranial irradiation in the intergroup phase III trial (PCI99-01, EORTC 22003-08004, RTOG 0212 and IFCT 99-01). Ann Oncol. 2011;22(5):1154–63. doi: 10.1093/annonc/mdq576.PubMedCrossRefGoogle Scholar
  35. 35.
    Wolfson AH, Bae K, Komaki R, Meyers C, Movsas B, Le Pechoux C, et al. Primary analysis of a phase II randomized trial Radiation Therapy Oncology Group (RTOG) 0212: impact of different total doses and schedules of prophylactic cranial irradiation on chronic neurotoxicity and quality of life for patients with limited-disease small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2011;81(1):77–84. doi: 10.1016/j.ijrobp.2010.05.013.PubMedCrossRefGoogle Scholar
  36. 36.
    Ball DL, Matthews JP. Prophylactic cranial irradiation: more questions than answers. Semin Radiat Oncol. 1995;5(1):61–8. doi: 10.1054/SRAO00500061.PubMedCrossRefGoogle Scholar
  37. 37.
    Tsao MN, Lloyd N, Wong RK, Chow E, Rakovitch E, Laperriere N, et al. Whole brain radiotherapy for the treatment of newly diagnosed multiple brain metastases. Cochrane Database Syst Rev. 2012;4, CD003869. doi: 10.1002/14651858.CD003869.pub3.PubMedGoogle Scholar
  38. 38.
    Young DF, Posner JB, Chu F, Nisce L. Rapid-course radiation therapy of cerebral metastases: results and complications. Cancer. 1974;34(4):1069–76.PubMedCrossRefGoogle Scholar
  39. 39.
    Hindo WA, DeTrana 3rd FA, Lee MS, Hendrickson FR. Large dose increment irradiation in treatment of cerebral metastases. Cancer. 1970;26(1):138–41.PubMedCrossRefGoogle Scholar
  40. 40.
    Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7. doi: 10.1038/3305.PubMedCrossRefGoogle Scholar
  41. 41.
    Colicos MA, Dash PK. Apoptotic morphology of dentate gyrus granule cells following experimental cortical impact injury in rats: possible role in spatial memory deficits. Brain Res. 1996;739(1–2):120–31.PubMedCrossRefGoogle Scholar
  42. 42.
    Raber J, Rola R, LeFevour A, Morhardt D, Curley J, Mizumatsu S, et al. Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat Res. 2004;162(1):39–47.PubMedCrossRefGoogle Scholar
  43. 43.
    Rola R, Raber J, Rizk A, Otsuka S, VandenBerg SR, Morhardt DR, et al. Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp Neurol. 2004;188(2):316–30. doi: 10.1016/j.expneurol.2004.05.005.PubMedCrossRefGoogle Scholar
  44. 44.
    Wan JF, Zhang SJ, Wang L, Zhao KL. Implications for preserving neural stem cells in whole brain radiotherapy and prophylactic cranial irradiation: a review of 2270 metastases in 488 patients. J Radiat Res. 2013;54(2):285–91. doi: 10.1093/jrr/rrs085.PubMedCrossRefGoogle Scholar
  45. 45.
    Gondi V, Tome WA, Marsh J, Struck A, Ghia A, Turian JV, et al. Estimated risk of perihippocampal disease progression after hippocampal avoidance during whole-brain radiotherapy: safety profile for RTOG 0933. Radiother Oncol. 2010;95(3):327–31. doi: 10.1016/j.radonc.2010.02.030.PubMedCrossRefGoogle Scholar
  46. 46.•
    Mehta MP. Radiation Therapy Oncology Group: RTOG 0933 Protocol. Available at http://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?study=0933 Accessed July 2013. This article, the RTOG 0933 protocol, describes the rationale behind hippocampal sparing radiation and provides an excellent stepwise guide on how to contour and plan for hippocampal sparing radiotherapy.
  47. 47.
    Gondi V, Hermann BP, Mehta MP, Tome WA. Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys. 2013;85(2):348–54. doi: 10.1016/j.ijrobp.2012.11.031.PubMedCrossRefGoogle Scholar
  48. 48.
    Mizumatsu S, Monje ML, Morhardt DR, Rola R, Palmer TD, Fike JR. Extreme sensitivity of adult neurogenesis to low doses of X-irradiation. Cancer Res. 2003;63(14):4021–7.PubMedGoogle Scholar
  49. 49.
    Barani IJ, Benedict SH, Lin PS. Neural stem cells: implications for the conventional radiotherapy of central nervous system malignancies. Int J Radiat Oncol Biol Phys. 2007;68(2):324–33. doi: 10.1016/j.ijrobp.2007.01.033.PubMedCrossRefGoogle Scholar
  50. 50.
    Marsh JC, Gielda BT, Herskovic AM, Wendt JA, Turian JV. Sparing of the hippocampus and limbic circuit during whole brain radiation therapy: a dosimetric study using helical tomotherapy. J Med Imaging Radiat Oncol. 2010;54(4):375–82. doi: 10.1111/j.1754-9485.2010.02184.x.PubMedCrossRefGoogle Scholar
  51. 51.•
    Marsh JC, Gielda BT, Herskovic AM, Abrams RA. Cognitive sparing during the administration of whole brain radiotherapy and prophylactic cranial irradiation: current concepts and approaches. J Oncol. 2010;2010:198208. doi: 10.1155/2010/198208. This paper describes the mechanisms of CNS toxicity and explores the role of hippocampal sparing, limbic circuit sparing, and neural stem cell sparing radiotherapy. PubMedCrossRefGoogle Scholar
  52. 52.•
    Barani IJ, Larson DA, Berger MS. Future directions in treatment of brain metastases. Surg Neurol Int. 2013;4 Suppl 4:S220–30. doi: 10.4103/2152-7806.111299. An excellent review of recent studies investigating the role of WBRT and SRS with a focus on multiple brain metastases and projections for future treatment regimes. PubMedGoogle Scholar
  53. 53.
    Aoyama H, Shirato H, Tago M, Nakagawa K, Toyoda T, Hatano K, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA. 2006;295(21):2483–91. doi: 10.1001/jama.295.21.2483.PubMedCrossRefGoogle Scholar
  54. 54.••
    Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF, Kornguth DG, et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 2009;10(11):1037–44. doi: 10.1016/S1470-2045(09)70263-3. The only phase III RCT of SRS versus SRS with WBRT with a primary endpoint of neurocognitive function. The study was closed early according to early stopping rules on the basis that there was a high probability (96%) that patients randomly assigned to receive SRS plus WBRT were significantly more likely to show a decline in learning and memory function. PubMedCrossRefGoogle Scholar
  55. 55.••
    Kocher M, Soffietti R, Abacioglu U, Villa S, Fauchon F, Baumert BG, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol. 2011;29(2):134–41. doi: 10.1200/JCO.2010.30.1655. This paper reports the EORTC phase III RCT of WBRT versus observation after local therapy for 1-3 brain metastases. This large 359 patient trial provides a definitive statement on the impact of WBRT after local therapy. PubMedCrossRefGoogle Scholar
  56. 56.
    Patchell RA, Tibbs PA, Regine WF, Dempsey RJ, Mohiuddin M, Kryscio RJ, et al. Postoperative radiotherapy in the treatment of single metastases to the brain: a randomized trial. JAMA: J Am Med Assoc. 1998;280(17):1485–9.CrossRefGoogle Scholar
  57. 57.
    Mahmood U, Kwok Y, Regine WF, Patchell RA. Whole-brain irradiation for patients with brain metastases: still the standard of care. Lancet Oncol. 2010;11(3):221–2. doi: 10.1016/S1470-2045(09)70389-4. author reply 3.
  58. 58.
    Weiss SE, Kelly PJ. Neurocognitive function after WBRT plus SRS or SRS alone. Lancet Oncol. 2010;11(3):220–1. doi: 10.1016/S1470-2045(09)70387-0.PubMedCrossRefGoogle Scholar
  59. 59.••
    Soffietti R, Kocher M, Abacioglu UM, Villa S, Fauchon F, Baumert BG, et al. A European Organisation for Research and Treatment of Cancer phase III trial of adjuvant whole-brain radiotherapy versus observation in patients with one to three brain metastases from solid tumors after surgical resection or radiosurgery: quality-of-life results. J Clin Oncol. 2013;31(1):65–72. doi: 10.1200/JCO.2011.41.0639. This paper reports the QOL outcomes from [55]. It is the first such analysis and reveals a generally lower, albeit mild and transitory, change in QOL after WBRT. PubMedCrossRefGoogle Scholar
  60. 60.
    Li J, Bentzen SM, Renschler M, Mehta MP. Regression after whole-brain radiation therapy for brain metastases correlates with survival and improved neurocognitive function. J Clin Oncol. 2007;25(10):1260–6. doi: 10.1200/JCO.2006.09.2536.PubMedCrossRefGoogle Scholar
  61. 61.
    Brown WR, Blair RM, Moody DM, Thore CR, Ahmed S, Robbins ME, et al. Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation: a potential rat model of vascular dementia. J Neurol Sci. 2007;257(1–2):67–71. doi: 10.1016/j.jns.2007.01.014.PubMedCrossRefGoogle Scholar
  62. 62.
    Wilcock G, Mobius HJ, Stoffler A, Group MMM. A double-blind, placebo-controlled multicentre study of memantine in mild to moderate vascular dementia (MMM500). Int Clin Psychopharmacol. 2002;17(6):297–305.PubMedCrossRefGoogle Scholar
  63. 63.
    Tsien JZ. Building a brainier mouse. Sci Am. 2000;282(4):62–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Brown PD, Shook S, Laack NN, Wefel JS, Choucair A, Suh JH, et al. Memantine for the Prevention of Cognitive Dysfunction in Patients Receiving Whole-brain Radiation Therapy (WBRT): First Report of RTOG 0614, a Placebo-controlled, Double-blind, Randomized Trial. Int J Radiat Oncol Biol Phys. 2012;84(3):S1–2.CrossRefGoogle Scholar
  65. 65.
    Shaw EG, Rosdhal R, D'Agostino Jr RB, Lovato J, Naughton MJ, Robbins ME, et al. Phase II study of donepezil in irradiated brain tumor patients: effect on cognitive function, mood, and quality of life. J Clin Oncol: Off J Am Soc Clin Oncol. 2006;24(9):1415–20. doi: 10.1200/JCO.2005.03.3001.CrossRefGoogle Scholar
  66. 66.
    Rapp SR, Case D, Peiffer A, Naughton MJ, Stieber VW, Bayer GK et al. Phase III randomized, double-blind, placebo-controlled trial of donepezil in irradiated brain tumor survivors. 2013 ASCO Annual Meeting. Oral Abstract Session, Central Nervous System Tumours. J Clin Oncol 31, 2013 (suppl; abstr 2006).Google Scholar
  67. 67.
    Nonaka S, Chuang DM. Neuroprotective effects of chronic lithium on focal cerebral ischemia in rats. Neuroreport. 1998;9(9):2081–4.PubMedCrossRefGoogle Scholar
  68. 68.
    Rowe MK, Chuang DM. Lithium neuroprotection: molecular mechanisms and clinical implications. Expert Rev Mol Med. 2004;6(21):1–18. doi: 10.1017/S1462399404008385.PubMedCrossRefGoogle Scholar
  69. 69.
    Yazlovitskaya EM, Edwards E, Thotala D, Fu A, Osusky KL, Whetsell Jr WO, et al. Lithium treatment prevents neurocognitive deficit resulting from cranial irradiation. Cancer Res. 2006;66(23):11179–86. doi: 10.1158/0008-5472.CAN-06-2740.PubMedCrossRefGoogle Scholar
  70. 70.•
    Khasraw M, Ashley D, Wheeler G, Berk M. Using lithium as a neuroprotective agent in patients with cancer. BMC Med. 2012;10:131. doi: 10.1186/1741-7015-10-131. This summary article describes the role of lithium for neurocognitive dysfunction and its potential role in radiation neuroprotection. PubMedCrossRefGoogle Scholar
  71. 71.
    Foland LC, Altshuler LL, Sugar CA, Lee AD, Leow AD, Townsend J, et al. Increased volume of the amygdala and hippocampus in bipolar patients treated with lithium. Neuroreport. 2008;19(2):221–4. doi: 10.1097/WNR.0b013e3282f48108.PubMedCrossRefGoogle Scholar
  72. 72.
    Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK. Enhancement of hippocampal neurogenesis by lithium. J Neurochem. 2000;75(4):1729–34.PubMedCrossRefGoogle Scholar
  73. 73.
    Huo K, Sun Y, Li H, Du X, Wang X, Karlsson N, et al. Lithium reduced neural progenitor apoptosis in the hippocampus and ameliorated functional deficits after irradiation to the immature mouse brain. Mol Cell Neurosci. 2012;51(1–2):32–42. doi: 10.1016/j.mcn.2012.07.002.PubMedCrossRefGoogle Scholar
  74. 74.
    Barwon Health, Deakin University, Peter MacCallum Cancer Centre; Australia. A Feasibility Trial Using Lithium As A Neuroprotective Agent In Patients Undergoing Prophylactic Cranial Irradiation For Small Cell Lung Cancer (TULIP). Available at http://clinicaltrials.gov/ct2/show/NCT01486459 NLM identifier: NCT01486459. Accessed July, 2013.
  75. 75.
    Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev. 2006;86(3):747–803. doi: 10.1152/physrev.00036.2005.PubMedCrossRefGoogle Scholar
  76. 76.
    Ghosh SN, Zhang R, Fish BL, Semenenko VA, Li XA, Moulder JE, et al. Renin-Angiotensin system suppression mitigates experimental radiation pneumonitis. Int J Radiat Oncol Biol Phys. 2009;75(5):1528–36. doi: 10.1016/j.ijrobp.2009.07.1743.PubMedCrossRefGoogle Scholar
  77. 77.
    Moulder JE, Cohen EP, Fish BL. Captopril and losartan for mitigation of renal injury caused by single-dose total-body irradiation. Radiat Res. 2011;175(1):29–36. doi: 10.1667/RR2400.1.PubMedCrossRefGoogle Scholar
  78. 78.
    George AJ, Thomas WG, Hannan RD. The renin-angiotensin system and cancer: old dog, new tricks. Nat Rev Cancer. 2010;10(11):745–59. doi: 10.1038/nrc2945.PubMedCrossRefGoogle Scholar
  79. 79.•
    Robbins ME, Zhao W, Garcia-Espinosa MA, Diz DI. Renin-angiotensin system blockers and modulation of radiation-induced brain injury. Curr Drug Targets. 2010;11(11):1413–22. This comprehensive paper describes the role of RAS in the brain and the potential role of RAS blockers in amelioration of radiation-induced brain injury. PubMedCrossRefGoogle Scholar
  80. 80.
    Kim JH, Brown SL, Kolozsvary A, Jenrow KA, Ryu S, Rosenblum ML, et al. Modification of radiation injury by ramipril, inhibitor of angiotensin-converting enzyme, on optic neuropathy in the rat. Radiat Res. 2004;161(2):137–42.PubMedCrossRefGoogle Scholar
  81. 81.
    Robbins ME, Payne V, Tommasi E, Diz DI, Hsu FC, Brown WR, et al. The AT1 receptor antagonist, L-158,809, prevents or ameliorates fractionated whole-brain irradiation-induced cognitive impairment. Int J Radiat Oncol Biol Phys. 2009;73(2):499–505. doi: 10.1016/j.ijrobp.2008.09.058.PubMedCrossRefGoogle Scholar
  82. 82.
    Conner KR, Forbes ME, Lee WH, Lee YW, Riddle DR. AT1 receptor antagonism does not influence early radiation-induced changes in microglial activation or neurogenesis in the normal rat brain. Radiat Res. 2011;176(1):71–83.PubMedCrossRefGoogle Scholar
  83. 83.
    Lee TC, Greene-Schloesser D, Payne V, Diz DI, Hsu FC, Kooshki M, et al. Chronic administration of the angiotensin-converting enzyme inhibitor, ramipril, prevents fractionated whole-brain irradiation-induced perirhinal cortex-dependent cognitive impairment. Radiat Res. 2012;178(1):46–56.PubMedCrossRefGoogle Scholar
  84. 84.
    Jenrow KA, Liu J, Brown SL, Kolozsvary A, Lapanowski K, Kim JH. Combined atorvastatin and ramipril mitigate radiation-induced impairment of dentate gyrus neurogenesis. J Neuro-Oncol. 2011;101(3):449–56. doi: 10.1007/s11060-010-0282-x.CrossRefGoogle Scholar
  85. 85.
    Bordet R, Ouk T, Petrault O, Gele P, Gautier S, Laprais M, et al. PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans. 2006;34(Pt 6):1341–6. doi: 10.1042/BST0341341.PubMedGoogle Scholar
  86. 86.
    Ramanan S, Kooshki M, Zhao W, Hsu FC, Riddle DR, Robbins ME. The PPARalpha agonist fenofibrate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation. Int J Radiat Oncol Biol Phys. 2009;75(3):870–7. doi: 10.1016/j.ijrobp.2009.06.059.PubMedCrossRefGoogle Scholar
  87. 87.
    Schnegg CI, Greene-Schloesser D, Kooshki M, Payne VS, Hsu FC, Robbins ME. The PPARdelta agonist GW0742 inhibits neuroinflammation, but does not restore neurogenesis or prevent early delayed hippocampal-dependent cognitive impairment after whole-brain irradiation. Free Radic Biol Med. 2013;61C:1–9. doi: 10.1016/j.freeradbiomed.2013.03.002.PubMedCrossRefGoogle Scholar
  88. 88.
    Zhao W, Payne V, Tommasi E, Diz DI, Hsu FC, Robbins ME. Administration of the peroxisomal proliferator-activated receptor gamma agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment. Int J Radiat Oncol Biol Phys. 2007;67(1):6–9. doi: 10.1016/j.ijrobp.2006.09.036.PubMedCrossRefGoogle Scholar
  89. 89.
    Wake Forest University. Pioglitazone Hydrochloride in preventing radiation-induced cognitive dysfunction in treating patients with brain tumors. Available from: http://clinicaltrials.gov/ct2/show/NCT01151670 NLM identifier: NCT0115670. Accessed July, 2013.
  90. 90.
    Stessin AM, Gursel DB, Schwartz A, Parashar B, Kulidzhanov FG, Sabbas AM, et al. FTY720, sphingosine 1-phosphate receptor modulator, selectively radioprotects hippocampal neural stem cells. Neurosci Lett. 2012;516(2):253–8. doi: 10.1016/j.neulet.2012.04.004.PubMedCrossRefGoogle Scholar
  91. 91.
    Zorrilla Zubilete MA, Guelman LR, Maur DG, Caceres LG, Rios H, Zieher LM, et al. Partial neuroprotection by 17-β-estradiol in neonatal gamma-irradiated rat cerebellum. Neurochem Int. 2011;58(3):273–80.PubMedCrossRefGoogle Scholar
  92. 92.
    Mehrotra S, Pecaut MJ, Gridley DS. Analysis of minocycline as a countermeasure against acute radiation syndrome. In Vivo. 2012;26(5):743–58.PubMedGoogle Scholar
  93. 93.
    Oh SB, Park HR, Jang YJ, Choi SY, Son TG, Lee J. Baicalein attenuates impaired hippocampal neurogenesis and the neurocognitive deficits induced by gamma-ray radiation. Br J Pharmacol. 2013;168(2):421–31. doi: 10.1111/j.1476-5381.2012.02142.x.PubMedCrossRefGoogle Scholar
  94. 94.
    Attia A, Rapp SR, Case LD, D'Agostino R, Lesser G, Naughton M, et al. Phase II study of Ginkgo biloba in irradiated brain tumor patients: effect on cognitive function, quality of life, and mood. J Neuro-Oncol. 2012;109(2):357–63. doi: 10.1007/s11060-012-0901-9.CrossRefGoogle Scholar
  95. 95.
    Said UZ, Saada HN, Abd-Alla MS, Elsayed ME, Amin AM. Hesperidin attenuates brain biochemical changes of irradiated rats. Int J Radiat Biol. 2012;88(8):613–8. doi: 10.3109/09553002.2012.694008.PubMedCrossRefGoogle Scholar
  96. 96.
    Xin N, Li YJ, Li X, Wang X, Li Y, Zhang X, et al. Dragon's blood may have radioprotective effects in radiation-induced rat brain injury. Radiat Res. 2012;178(1):75–85.PubMedCrossRefGoogle Scholar
  97. 97.
    Liu JL, Tian DS, Li ZW, Qu WS, Zhan Y, Xie MJ, et al. Tamoxifen alleviates irradiation-induced brain injury by attenuating microglial inflammatory response in vitro and in vivo. Brain Res. 2010;1316:101–11. doi: 10.1016/j.brainres.2009.12.055.PubMedCrossRefGoogle Scholar
  98. 98.
    Wong-Goodrich SJ, Pfau ML, Flores CT, Fraser JA, Williams CL, Jones LW. Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation. Cancer Res. 2010;70(22):9329–38. doi: 10.1158/0008-5472.CAN-10-1854.PubMedCrossRefGoogle Scholar
  99. 99.
    Acharya MM, Christie LA, Lan ML, Donovan PJ, Cotman CW, Fike JR, et al. Rescue of radiation-induced cognitive impairment through cranial transplantation of human embryonic stem cells. Proc Natl Acad Sci U S A. 2009;106(45):19150–5. doi: 10.1073/pnas.0909293106.PubMedCrossRefGoogle Scholar
  100. 100.
    Daley GQ, Ahrlund Richter L, Auerbach JM, Benvenisty N, Charo RA, Chen G, et al. Ethics. The ISSCR guidelines for human embryonic stem cell research. Science. 2007;315(5812):603–4. doi: 10.1126/science.1139337.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Radiation OncologyPeter MacCallum Cancer CentreEast MelbourneAustralia

Personalised recommendations