Current Treatment Options in Oncology

, Volume 13, Issue 1, pp 102–121 | Cite as

Cutaneous T-Cell Lymphomas: A Review of New Discoveries and Treatments

  • Tara Bloom
  • Timothy M. Kuzel
  • Christiane Querfeld
  • Joan Guitart
  • Steven T. Rosen
Lymphomas (L Gordon, Section Editor)

Opinion statement

Treatment regimens of patients with CTCL vary widely based on clinician preference and patient tolerance. Skin directed therapies are recommended for patients with early stage IA and IB MF, with combinations used in refractory cases. While no regimen has been proven to prolong survival in advanced stages, immunomodulatory regimens should be used initially to reduce the need for cytotoxic therapies. In more advanced stages of disease, treatment efforts should strive for palliation and improvement of quality of life. With many new therapies and strategies on the horizon, the future looks promising for CTCL patients. Unfortunately, other than allogeneic HCT, there are no potential curative therapies for CTCL. Clinical trials are currently underway to identify new therapies to improve quality of life for patients, and researchers are hard at work to identify novel pathways and genes for prognostication and as targets for therapies. Importantly, collaborative clinical trials to enhance rates of accrual need to be conducted, and improved interpretation of data via standardizing end points and response criteria should be an emphasis. Recently, the International Society for Cutaneous Lymphomas (ISCL), the United States Cutaneous Lymphoma Consortium (USCLC), and the Cutaneous Lymphoma Task Force of the European Organisation for Research and Treatment of Cancer (EORTC) met to develop consensus guidelines to facilitate collaboration on clinical trials. These proposed guidelines consist of: recommendations for standardizing general protocol design; a scoring system for assessing tumor burden in skin, lymph nodes, blood, and viscera; definition of response in skin, nodes, blood, and viscera; a composite global response score; and a definition of end points. Although these guidelines were generated by consensus panels, they have not been prospectively or retrospectively validated through analysis of large patient cohorts.


Cutaneous T-Cell lymphomas (CTLC) Cutaneous CD30+ T-cell lymphoproliferative disorders Retinoids Denileukin diftitox Treatment 



T. Bloom: none; T. Kuzel: has grants pending from Eli Lilly and received honoraria from Celgene; C. Querfeld: none; J. Guitart: none; S. Rosen: External advisory board member for Abbott Laboratories, Celgene and Merck US Cutaneous T-Cell Lymphoma, has consulted for Allos, CTI, and Genentech, has grants pending for Celgene, has received payment for development of educational presentations and received honoraria from Allos Therapeutics, Genzyme, Genentech, Seattle Genetics, and Therakos, and has received royalties from Human Myeloma Cell Line MM-1.

References and Recommended Readings

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Bradford P, Devesa S, Anderson W, et al. Cutaneous lymphoma incidence patterns in the United States: a population-based study of 3884 cases. Blood. 2009;113(21):5064–73.PubMedCrossRefGoogle Scholar
  2. 2.
    Weinstock MA, Gardstein B. Twenty-year trends in the reported incidence of mycosis fungoides and associated mortality. Am J Public Health. 1999;89:1240–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Arulogun SO, Prince HM, Ng J, et al. Long-term outcomes of patients with advanced-stage cutaneous T-cell lymphoma and large cell transformation. Blood. 2008;112:3082–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Willemze R, Jaffe ES, Burg G, et al. WHO-EORTC classification for cutaneous lymphomas. Blood. 2005;105(10):3768–85.PubMedCrossRefGoogle Scholar
  5. 5.
    Jones D, Dang NH, Duvic M, Washington LT, Huh YO. Absence of CD26 expression is a useful marker fordiagnosis of T-cell lymphoma in peripheral blood. Am J Clin Pathol. 2001;115(6):885–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Iwai Y, Terawaki S, Honjo T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cellsby enhanced recruitment of effector T cells. Int Immunol. 2005;17(2):133–44.PubMedCrossRefGoogle Scholar
  7. 7.
    Samimi S, Benoit B, Evans K, et al. Increased programmed death-1 expression on CD4+ T cells in cutaneous T-cell lymphoma: implications for immune suppression. Arch Dermatol. 2010;146(12):1382–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Iwai Y, Terawaki S, Honjo T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumorcells by enhanced recruitment of effector T cells. Int Immunol. 2005;17(2):133–44.PubMedCrossRefGoogle Scholar
  9. 9.
    Pui JC, Allman D, Xu L, et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity. 1999;11(3):299–308.PubMedCrossRefGoogle Scholar
  10. 10.
    Kamstrup MR, Gjerdrum LM, Biskup E, et al. Notch1 as a potential therapeutic target in cutaneous T-cell lymphoma. Blood. 2010;116(14):2504–12.PubMedCrossRefGoogle Scholar
  11. 11.
    Hu C, Dievart A, Lupien M, et al. Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland developmentand induces mammary tumors. Am J Pathol. 2006;168(3):973–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Pinnix CC, Lee JT, Liu ZJ, et al. Active Notch1 confers a transformed phenotype to primary human melanocytes. Cancer Res. 2009;69(13):5312–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Rosati E, Sabatini R, Rampino G, et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood. 2009;113(4):856–65.PubMedCrossRefGoogle Scholar
  14. 14.
    Wozniak MB, Tracey L, Ortiz-Romero PL. Psoralen plus ultraviolet A +/− interferon-alpha treatment resistance in mycosis fungoides: the role of tumour microenvironment, nuclear transcription factor-kappaB and T-cell receptor pathways. Br J Dermatol. 2009;160(1):92–102.PubMedCrossRefGoogle Scholar
  15. 15.
    Li ZW, Dalton WS. Tumor microenvironment and drug resistance in hematologic malignancies. Blood Rev. 2006;20:333–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Brender C, Nielsen M, Kaltoft K, et al. STAT3-mediated constitutive expression of SOCS-3 in cutaneous T-cell lymphoma. Blood. 2001;97:1056–62.PubMedCrossRefGoogle Scholar
  17. 17.
    Wu J, Nihal M, Siddiqui J, Vonderheid EC, Wood GS. Low FAS/CD95 expression by CTCL correlates with reduced sensitivity to apoptosis that can be restored by FAS upregulation. J Invest Dermatol. 2009;129(5):1165–73.PubMedCrossRefGoogle Scholar
  18. 18.
    Jones CL, Wain EM, Chu CC, et al. Downregulation of Fas gene expression in Sézary syndrome is associated with promoter hypermethylation. J Invest Dermatol. 2010;130(4):1116–25.PubMedCrossRefGoogle Scholar
  19. 19.
    Wu J, Wood GS. Reduction of Fas/CD95 promoter methylation, upregulation of Fas protein, and enhancementof sensitivity to apoptosis in cutaneous T-cell lymphoma. Arch Dermatol. 2011;147(4):443–9.PubMedCrossRefGoogle Scholar
  20. 20.•
    Rovedo M, Krett N, Rosen S. Inhibition of Glycogen Synthase Kinase-3 Increases the Cytotoxicity of Enzastaurin. J Invest Dermatol. 2011;131:1442–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Querfeld C, Rizvi MA, Kuzel TM, et al. The selective protein kinase C beta inhibitor enzastaurin induces apoptosis in cutaneous T-cell lymphoma cell lines through the AKT pathway. J Invest Dermatol. 2006;126:1641–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Trautinger F, Knobler R, Willemze R, et al. EORTC consensus recommendations for the treatment of mycosis fungoides/Sezary syndrome. Eur J Cancer. 2006;42:1014–30.PubMedCrossRefGoogle Scholar
  23. 23.•
    van Doorn R, van Kester MS, Dijkman R, et al. Oncogenomic analysis of mycosis fungoides reveals major differences with Sézary syndrome. Blood. 2009;113(1):127–36.PubMedCrossRefGoogle Scholar
  24. 24.
    Booken N, Gratchev A, Utikal J, et al. Sézary syndrome is a unique cutaneous T-cell lymphoma as identified by an expanded gene signature including diagnostic marker molecules CDO1 and DNM3. Leukemia. 2008;22:393–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Vermeer MH, Van Doorn R, Dijkman R, et al. Novel and highly recurrent chromosomal alterations in Sézary syndrome. Cancer Res. 2008;68:2689–98.PubMedCrossRefGoogle Scholar
  26. 26.•
    Campbell JJ, Clark RA, Watanabe R, et al. Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood. 2010;116(5):767–71.PubMedCrossRefGoogle Scholar
  27. 27.•
    Laharanne E, Oumouhou N, Bonnet F, et al. Genome-Wide Analysis of Cutaneous T-Cell Lymphomas Identifies Three Clinically Relevant Classes. J Invest Dermatol. 2010;130(6):1707–18.PubMedCrossRefGoogle Scholar
  28. 28.
    Laharanne E, Chevret E, Idrissi Y, et al. CDKN2A-CDKN2B deletion defines an aggressive subset of cutaneous T-cell lymphoma. Mod Pathol. 2010;23(4):547–58.PubMedCrossRefGoogle Scholar
  29. 29.
    Navas IC, Ortiz-Romero PL, Villuendas R, et al. p16(INK4a) gene alterations are frequent in lesions of mycosis fungoides. Am J Pathol. 2000;156:1565–72.PubMedCrossRefGoogle Scholar
  30. 30.
    Carbone A, Bernardini L, Valenzano F, et al. Array-based comparative genomic hybridization in early-stage mycosis fungoides: recurrent deletion of tumor suppressor genes BCL7A, SMAC/DIABLO, and RHOF. Genes Chromosomes Cancer. 2008;47:1067–75.PubMedCrossRefGoogle Scholar
  31. 31.
    Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99:15524–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Nevala H, Karenko L, Vakeva L, Ranki A. Proapoptotic and antiapoptotic markers in cutaneous T-cell lymphoma skin infiltrates and lymphomatoid papulosis. Br J Dermatol. 2001;145:928–37.PubMedCrossRefGoogle Scholar
  33. 33.
    Klemke CD, Brenner D, Weiss EM, et al. Lack of T-Cell receptor–induced signaling is crucial for CD95 ligand up-regulation and protects cutaneous T-Cell lymphoma cells from activation-induced cell death. Cancer Res. 2009;69(10):4175–83. Epub 2009 May 12.PubMedCrossRefGoogle Scholar
  34. 34.
    Litvinov IV, Jones DA, Sasseville D, et al. Transcriptional profiles predict disease outcome in patients with cutaneous T-cell lymphoma. Clin Cancer Res. 2010;16(7):2106–14. Epub 2010 Mar 16.PubMedCrossRefGoogle Scholar
  35. 35.
    Lansigan F, Foss F. Current and emerging treatment strategies for cutaneous T-cell lymphoma. Drugs. 2010;70(3):273–86.PubMedCrossRefGoogle Scholar
  36. 36.
    Querfeld C, Rosen S, Kuzel T, et al. Long-term follow-up of patients with early-stage cutaneous T-Cell lymphoma who achieved complete remission with psoralen plus UV-A monotherapy. Arch Dermatol. 2005;141:305–11.PubMedCrossRefGoogle Scholar
  37. 37.
    Herrmann JJ, Roenigk Jr HH, Hönigsmann H. Ultraviolet radiation for treatment of cutaneous T-cell lymphoma. Hematol Oncol Clin North Am. 1995;9:1077–88.PubMedGoogle Scholar
  38. 38.
    Hönigsmann H, Tanew A. Photo(chemo)therapy for cutaneous T-cell lymphoma. In: Krutmann J, Hönigsmann H, Elmets CA, editors. Dermatologic phototherapy and photodiagnostic methods. 2nd ed. Heidelberg: Springer; 2009. p. 135–49.CrossRefGoogle Scholar
  39. 39.
    Trautinger F, Knobler R, Willemze R, et al. EORTC consensus recommendations for the treatment of mycosis fungoides/Sezary syndrome. Eur J Cancer. 2006;42:1014–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Trautinger F. Phototherapy of mycosis fungoides. Photodermatol Photoimmunol Photomed. 2011;27(2):68–74.PubMedCrossRefGoogle Scholar
  41. 41.
    Rosen ST, Querfeld C, Kuzel TM, Guitart J. Cutaneous T-Cell lymphomas: a guide for the community oncologist, 2nd edn. 2008.Google Scholar
  42. 42.
    Zackheim HS, Kashani-Sabet M, Amin S. Topical corticosteroids for mycosis fungoides: experience in 79 patients. Arch Dermatol. 1998;134(8):949–54.PubMedCrossRefGoogle Scholar
  43. 43.
    Kim YH, Martinez G, Varghese A, et al. Topical nitrogen mustard in the management of mycosis fungoides: update of the Stanford experience. Arch Dermatol. 2003;139(2):165–73.PubMedCrossRefGoogle Scholar
  44. 44.
    Zackheim HS, Cutaneous T. cell lymphoma: update of treatment. Dermatology. 1999;199:102–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Abbott RA, Whittaker SJ, Morris SL, et al. Bexarotene therapy for mycosis fungoides and Sézary syndrome. Br J Dermatol. 2009;160(6):1299–307.PubMedCrossRefGoogle Scholar
  46. 46.
    Heald P, Mehlmauer M, Martin AG, et al. Topical bexarotene treatment for patients with refractory or persistent early stage cutaneous T-cell lymphoma: results of the phase III clinical trial. J Am Acad Dermatol. 2003;49:801–15.PubMedCrossRefGoogle Scholar
  47. 47.
    Breneman D, Duvic M, Kuzel T, et al. Phase 1 and 2 trial of bexarotene gel for skin-directed treatment of patients with cutaneous T-cell lymphoma. Arch Dermatol. 2002;138(3):325–32.PubMedCrossRefGoogle Scholar
  48. 48.
    Apisarnthanarax N, Talpur R, Ward S, et al. Tazarotene 0.1% gel for refractory mycosis fungoides lesions: an open-label pilot study. J Am Acad Dermatol. 2004;50(4):600–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Navi D, Riaz N, Levin YS, Sullivan NC, et al. The Stanford University experience with conventional-dose, total skin electron-beam therapy in the treatment of generalized patch or plaque (T2) and tumor (T3) mycosis fungoides. Arch Dermatol. 2011;147(5):561–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Introcaso CE, Micaily B, Richardson SK, et al. Total skin electron beam therapy may be associated with improvement of peripheral blood disease in Sézary syndrome. J Am Acad Dermatol. 2008;58(4):592–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Duvic M, Hymes K, Heald P, et al. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II-III trial results. J Clin Oncol. 2001;19(9):2456–71.PubMedGoogle Scholar
  52. 52.
    Assaf C, Bagot M, Dummer R. Minimizing adverse side-effects of oral bexarotene in cutaneous T-cell lymphoma: an expert opinion. Br J Dermatol. 2006;155:261–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Gorgun G, Foss F. Immunomodulatory effects of RXR rexinoids: modulation of high-affinity IL-2R expression enhances susceptibility to denileukin diftitox. Blood. 2002;100(4):1399–403.PubMedCrossRefGoogle Scholar
  54. 54.
    Foss F, Demierre MF, DiVenuti G. A phase-1 trial of bexarotene and denileukin diftitox in patients with relapsed or refractory cutaneous T-cell lymphoma. Blood. 2005;106(2):454–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Nakase K, Kita K, Nasu K, et al. Differential expression of interleukin-2 receptors (alpha and beta chain) in mature lymphoid neoplasms. Am J Hematol. 1994;46:179–83.PubMedCrossRefGoogle Scholar
  56. 56.
    Nichols J, Foss F, Kuzel TM, et al. Interleukin-2 fusion protein: An investigational therapy for interleukin-2 receptor expressing malignancies. Eur J Cancer. 1997;33 suppl 1:S34–6.PubMedCrossRefGoogle Scholar
  57. 57.•
    Prince HM, Duvic M, Martin A et al. Phase III placebo-controlled trial of denileukin diftitox for patients with cutaneous T-celllymphoma. J Clin Oncol. 2010;28(11):1870–7. Epub 2010 Mar 8.Google Scholar
  58. 58.
    Foss F, Duvic M, Olsen EA. Predictors of complete responses with denileukin diftitox in cutaneous T-cell lymphoma. Am J Hematol. 2011;86(7):627–30. doi:10.1002/ajh.22039.PubMedCrossRefGoogle Scholar
  59. 59.
    Olsen E, Duvic M, Frankel A, et al. Pivotal phase III trial of two dose levels of denileukin diftitox for the treatment of cutaneous T-cell lymphoma. J Clin Oncol. 2001;19:376–88.PubMedGoogle Scholar
  60. 60.
    Zic JA. The treatment of cutaneous T-cell lymphoma with photopheresis. Dermatol Ther. 2003;16:337–46.PubMedCrossRefGoogle Scholar
  61. 61.
    Duvic M, Chiao N, Talpur R. Extracorporeal photopheresis for the treatment of cutaneous T-cell lymphoma. J Cutan Med Surg. 2003;7:3–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Knobler R, Jantschitsch C. Extracorporeal photochemoimmunotherapy in cutaneous T-cell lymphoma. Transfus Apher Sci. 2003;28:81–9.PubMedCrossRefGoogle Scholar
  63. 63.•
    Olsen EA, Rook AH, Zic J, et al. Sézary syndrome: Immunopathogenesis, literature review of therapeutic options, and recommendations for therapy by the United States Cutaneous Lymphoma Consortium (USCLC). J Am Acad Dermatol. 2011;64(2):352–404.PubMedCrossRefGoogle Scholar
  64. 64.
    Bisaccia E, Vonderheid EC, Geskin L. Safety of a new, single, integrated, closed photopheresis system in patients with cutaneous T-cell lymphoma. Br J Dermatol. 2009;161(1):167–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Wilson LD, Jones GW, Kim D, et al. Experience with total skin electron beam therapy in combination with extracorporeal photophoresis in the management of patients with erythrodermic (T4) mycosis fungoides. J Am Acad Dermatol. 2000;43:54–60.PubMedCrossRefGoogle Scholar
  66. 66.
    Suchin KR, Cucchiara AJ, Gottleib SL, et al. Treatment of cutaneous T-cell lymphoma with combined immunotherapy: a 14-year experience at a single institution. Arch Dermatol. 2002;138:1054–60.PubMedCrossRefGoogle Scholar
  67. 67.
    Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5(9):769–84.PubMedCrossRefGoogle Scholar
  68. 68.
    Peart MJ, Smyth GK, Laar RK, et al. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci U S A. 2005;102:3697–702. doi:10.1073/pnas.0500369102.PubMedCrossRefGoogle Scholar
  69. 69.
    Piekarz RL, Robey R, Sandor V, et al. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood. 2001;98(9):2865–8.PubMedCrossRefGoogle Scholar
  70. 70.•
    Whittaker SJ, Demierre MF, Kim EJ, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010;28:4485.PubMedCrossRefGoogle Scholar
  71. 71.
    Piekarz RL, Frye R, Turner M, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol. 2009;27:5410–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Piekarz RL, Sackett DL, Bates SE. Histone deacetylase inhibitors and demethylating agents: Clinical development of histone deacetylase inhibitors for cancer therapy. Cancer J. 2007;13:30–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109(1):31–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang C, Richon V, Ni X, et al. Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T cell lymphoma cells: relevance to mechanism of therapeutic action. J Invest Dermatol. 2005;125:1045–52.PubMedCrossRefGoogle Scholar
  75. 75.
    Duvic M, Talpur R, Ni X, et al. Phase 2 trial of oral vorinostat for refractory cutaneous T cell lymphoma. Blood. 2007;109:31–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Wozniak MB, Villuendas R, Bischoff JR, et al. Vorinostat interferes with the signaling transduction pathway of T-cell receptor and synergizes with phosphoinositide-3 kinase inhibitors in cutaneous T-cell lymphoma. Haematologica. 2010;95(4):613–21.PubMedCrossRefGoogle Scholar
  77. 77.
    Stark GR, Kerr IM, Williams BR, et al. How cells respond to interferons. Annu Rev Biochem. 1998;67:227–64.PubMedCrossRefGoogle Scholar
  78. 78.
    Avilés A, Nambo MJ, Neri N, et al. Interferon and low dose methotrexate improve outcome in refractory mycosis fungoides/Sézary syndrome. Cancer Biother Radiopharm. 2007;22(6):836–40.PubMedCrossRefGoogle Scholar
  79. 79.
    Chiarion-Sileni V, Bononi A, Fornasa CV, et al. Phase II trial of interferon-alpha-2a plus psolaren with ultraviolet light A in patients with cutaneous T-cell lymphoma. Cancer. 2002;95:569–75.PubMedCrossRefGoogle Scholar
  80. 80.
    Rupoli S, Goteri G, Pulini S, et al. Long-term experience with low-dose interferon-alpha and PUVA in the management of early mycosis fungoides. Eur J Haematol. 2005;75:136–45.PubMedCrossRefGoogle Scholar
  81. 81.
    Stadler RKA, Luger T, Sterry W. Prospective, randomized, multicentre clinical trial on the use of interferon a-2a plus PUVA versus PUVA monotherapy in patients with cutaneous T-cell lymphoma, stages I and II. J Clin Oncology, ASCO Annual Meeting Proceedings Part I 2006;24 (Suppl.):18s. (abstr 7541).Google Scholar
  82. 82.
    Olsen EA, Rosen ST, Vollmer RT, et al. Interferon alfa-2a in the treatment of cutaneous T cell lymphoma. J Am Acad Dermatol. 1989;20(3):395–407.PubMedCrossRefGoogle Scholar
  83. 83.
    Querfeld C, Mehta N, Rosen ST, Guitart J, Rademaker A, Gerami P, et al. Alemtuzumab for relapsed and refractory erythrodermic cutaneous T-cell lymphoma: a single institution experience from the Robert H. Lurie Comprehensive Cancer Center. Leuk Lymphoma. 2009;50:1969–76.PubMedCrossRefGoogle Scholar
  84. 84.
    Dyer MJ, Hale G, Hayhoe FG, Waldmann H. Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood. 1989;73:1431–9.PubMedGoogle Scholar
  85. 85.
    Salisbury JR, Rapson NT, Codd JD, et al. Immunohistochemical analysis of CDw52 antigen expression in non-Hodgkin’s lymphomas. J Clin Pathol. 1994;47:313–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Riechmann L, Clark M, Waldmann H, et al. Reshaping human antibodies for therapy. Nature. 1998;332:323–7.CrossRefGoogle Scholar
  87. 87.
    Piccaluga PP, Agostinelli C, Righi S, et al. Expression of CD52 in peripheral T-cell Lymphoma. Haematologica. 2007;92:566–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Hale G. The CD52 antigen and development of the CAMPATH antibodies. Cytotherapy. 2001;3:137–43.PubMedCrossRefGoogle Scholar
  89. 89.
    Dyer MJ, Hale G, Hayhoe FG, et al. Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood. 1989;73:1431–9.PubMedGoogle Scholar
  90. 90.
    Dearden CE, Matutes E, Cazin B, et al. High remission rate in prolymphocytic leukemia with CAMPATH-1H. Blood. 2001;98:1721–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Gallamini A, Zaja F, Patti C, et al. Alemtuzumab (Campath-1H) and CHOP chemotherapy as first-line treatment of peripheral T-cell Lymphoma: results of a GITIL (Gruppo Italiano Terapie Innovative nei Linfomi) prospective multicenter trial. Blood. 2007;110:2316–23.PubMedCrossRefGoogle Scholar
  92. 92.
    Keating MJ, Cazin B, Coutre S, et al. Campath-1H treatment of T-cell prolymphocytic leukemia in patients for whom at least one prior chemotherapy regimen has failed. J Clin Oncol. 2002;20:205–13.PubMedCrossRefGoogle Scholar
  93. 93.
    Enblad G, Hagberg H, Erlanson M, et al. A pilot study of alemtuzumab (anti-CD52 monoclonal antibody) therapy for patients with relapsed or chemotherapy-refractory peripheral T-cell Lymphoma. Blood. 2004;103:2920–4.PubMedCrossRefGoogle Scholar
  94. 94.
    Mijovic A, Abdallah A, Pearce L, et al. Effects on erythropoiesis of alemtuzumab-containing reduced intensity and standard conditioning regimens. Br J Haematol. 2008;142:444–52.PubMedCrossRefGoogle Scholar
  95. 95.
    Bernengo MG, Quaglino P, Comessatti A, et al. Low-dose intermittent alemtuzumab in the treatment of Sezary syndrome: clinical and immunologic findings in 14 patients. Haematologica. 2007;92:784–94.PubMedCrossRefGoogle Scholar
  96. 96.
    Lundin J, Hagberg H, Repp R, et al. Phase 2 study of alemtuzumab (anti-CD52 monoclonal antibody) in patients with advanced mycosis fugoides/Sezary syndrome. Blood. 2003;101:4267–72.PubMedCrossRefGoogle Scholar
  97. 97.
    Weder P, Anliker M, Itin P, Bargetzi M. Familial cutaneous mycosis fungoides: successful treatment with a combination of gemcitabine and alemtuzumab. Dermatology. 2004;208:281–3.PubMedCrossRefGoogle Scholar
  98. 98.
    Porcu P, Baiocchi RA, Lee J, Lin TS, Blum K, Grady T, et al. Phase I trial of subcutaneous (SQ) alemtuzumab (A) and CHOP in T-cell lymphoma: preliminary results [abstract]. J Clin Oncol. 2006;24((suppl 18S)):7594.Google Scholar
  99. 99.
    Querfeld C, Kuzel TM, Guitart J, et al. Preliminary results of a phase II study of CC-5013 (Lenalidomide, Revlimid™) in patients with cutaneous T-cell lymphoma. Blood. 2005;106:936a–7a.Google Scholar
  100. 100.•
    Querfeld C, Kuzel T, Guitart J, et al. Lenalidomide (Revlimid®) in patients with cutaneous T-cell lymphoma. Hematology Meeting Reports. 2009;3(1):103–5.Google Scholar
  101. 101.
    Kaye FJ, Bunn Jr PA, Steinberg SM, et al. A randomized trial comparing combination electron-beam radiation and chemotherapy with topical therapy in the initial treatment of mycosis fungoides. N Engl J Med. 1989;321:1784–90.PubMedCrossRefGoogle Scholar
  102. 102.
    Krug LM, Ng KK, Kris MG, et al. Phase I and pharmacokinetic study of 10-propargyl- 10-deazaaminopterin, a new antifolate. Clin Cancer Res. 2000;6(9):3493–8.PubMedGoogle Scholar
  103. 103.
    O’Connor OA. Pralatrexate: an emerging new agent with activity in T-cell lymphomas. Curr Opin Oncol. 2006;18(6):591–7.PubMedCrossRefGoogle Scholar
  104. 104.•
    O’Connor OA, Horwitz S, Hamlin P, et al. Phase II-I-II study of two different doses and schedules of pralatrexate, a high-affinity substrate for the reduced folate carrier, in patients with relapsed or refractory lymphoma reveals marked activity in T-cell malignancies. J Clin Oncol. 2009;27(26):4357–64.PubMedCrossRefGoogle Scholar
  105. 105.
    Zinzani PL, Musuraca G, Tani M, et al. Phase II trial of proteasome inhibitor bortezomib in patients with relapsed or refractory cutaneous T-cell lymphoma. J Clin Oncol. 2007;25(27):4293–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Nabhan C, Krett N, Gandhi V, Rosen S. Gemcitabine in hematologic malignancies. Curr Opin Oncol. 2001;13:514–21.PubMedCrossRefGoogle Scholar
  107. 107.
    Duvic M, Talpur R, Wen S, Kurzrock R, David CL, Apisarnthanarax N. Phase II evaluation of gemcitabine monotherapy for cutaneous T-cell lymphoma. Clin Lymphoma Myeloma. 2006;7:51–8.PubMedCrossRefGoogle Scholar
  108. 108.
    Zinzani PL, Baliva G, Magagnoli M, Bendandi M, Modugno G, Gherlinzoni F, et al. Gemcitabine treatment in pretreated cutaneous T-cell lymphoma: experience in 44 patients. J Clin Oncol. 2000;18:2603–6.PubMedGoogle Scholar
  109. 109.
    Marchi E, Alinari L, Tani M, Stefoni V, Pimpinelli N, Berti E, et al. Gemcitabine as frontline treatment for cutaneous T-cell lymphoma: phase II study of 32 patients. Cancer. 2005;104:2437–41.PubMedCrossRefGoogle Scholar
  110. 110.
    Von Hoff DD, Dahlberg S, Hartstock RJ, et al. Activity of fludarabine monophosphate in patients with advanced mycosis fungoides: a Southwest Oncology Group study. J Natl Cancer Inst. 1990;82(16):1353–5.CrossRefGoogle Scholar
  111. 111.
    Foss FM, Ihde DC, Breneman DL, et al. Phase II study of pentostatin and intermittent high-dose recombinant interferon alfa-2a in advanced mycosis fungoides/Sezary syndrome. J Clin Oncol. 1992;10(12):1907–13.PubMedGoogle Scholar
  112. 112.
    Wollina U, Dummer R, Brockmeyer NH, et al. Multicenter study of pegylated liposomal doxorubicin in patients with cutaneous T-cell lymphoma. Cancer. 2003;98(5):993–1001.PubMedCrossRefGoogle Scholar
  113. 113.•
    Querfeld C, Rosen ST, Guitart J, et al. Multicenter Phase II Trial of Temozolomide in Mycosis Fungoides/SezarySyndrome: Correlation with O6-Methylguanine-DNA Methyltransferase andMismatch Repair Proteins. Clin Cancer Res. 2011;17(17):5748–54.PubMedCrossRefGoogle Scholar
  114. 114.
    Liu L, Markowitz S, Gerson SL. Mismatch repair mutations override alkyltransferase in conferring resistance to temozolomide but not to 1,3-bis(2-chloroethyl)nitrosourea. Cancer Res. 1996;56:5375–9.PubMedGoogle Scholar
  115. 115.
    Reni M, Mason W, Zaja F, et al. Salvage chemotherapy with temozolomide in primary CNS lymphomas: preliminary results of a phase II trial. Eur J Cancer. 2004;40:1682–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Middleton MR, Grob JJ, Aaronson N, et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J Clin Oncol. 2000;18:158–66.PubMedGoogle Scholar
  117. 117.
    Hegi ME, Diserens AC, Godard S, et al. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res. 2004;10:1871–4.PubMedCrossRefGoogle Scholar
  118. 118.
    Akpek G, Koh HK, Bogen S, et al. Chemotherapy with etoposide, vincristine, doxorubicin, bolus cyclophosphamide, and oral prednisone in patients with refractory cutaneous T cell lymphoma. Cancer. 1999;86:1368–76.PubMedCrossRefGoogle Scholar
  119. 119.
    Fierro MT, Quaglino P, Savoia P, Verrone A, Bernengo MG. Systemic polychemotherapy in the treatment of primary cutaneous lymphomas: a clinical follow-up study of 81 patients treated with COP or CHOP. Leuk Lymphoma. 1998;31(5–6):583–8.PubMedGoogle Scholar
  120. 120.
    Mebazaa A, Dupuy A, Rybojad M, Mouly F, Moulonguet I, Vignon-Pennamen MD, Rivet J, Janin A, Lebbé C, Dubertret L, Morel P, Bachelez H, Brice P. ESHAP for primary cutaneous T-cell lymphomas: efficacy and tolerance in 11 patients. Hematol J. 2005;5(7):553–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Duarte RF, Schmitz N, Servitje O, et al. Haematopoietic stem cell transplantation for patients with primary cutaneous T-cell lymphoma. Bone Marrow Transplant. 2008;41:597–604.PubMedCrossRefGoogle Scholar
  122. 122.
    Wu PA, Kim YH, Lavori PW, et al. A meta-analysis of patients receiving allogeneic or autologous hematopoietic stem cell transplant in mycosis fungoides and Sezary syndrome. Biol Blood Marrow Transplant. 2009;15:982–90.PubMedCrossRefGoogle Scholar
  123. 123.•
    Duarte RF, Canals C, Onida F, et al. Allogeneic hematopoietic cell transplantation for patients with mycosis fungoides and Sézary syndrome: a retrospective analysis of the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol. 2010;28(29):4492–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Carrié E, Buzyn A, Fraitag S, et al. Transformed juvenile-onset mycosis fungoides: Treatment by bone marrow transplantation with graft-versus-lymphoma effect. Ann Dermatol Venereol. 2007;134:471–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Gabriel IH, Olavarria E, Jones RR, et al. Graft versus lymphoma effect after early relapse following reduced intensity sibling allogeneic stem cell transplantation for relapsed cytotoxic variant of mycosis fungoides. Bone Marrow Transplant. 2007;40:401–3.PubMedCrossRefGoogle Scholar
  126. 126.
    Soligo D, Ibatici A, Berti E, et al. Treatment of advanced mycosis fungoides by allogeneic stem-cell transplantation with a nonmyeloablative regimen. Bone Marrow Transplant. 2003;31:663–6.PubMedCrossRefGoogle Scholar
  127. 127.
    Burt RK, Guitart J, Traynor A, et al. Allogeneic hematopoietic stem cell transplantation for advanced mycosis fungoides: Evidence of a graft-versus-tumor effect. Bone Marrow Transplant. 2000;25:111–3.PubMedCrossRefGoogle Scholar
  128. 128.
    Molina A, Zain J, Arber DA, et al. Durable clinical, cytogenetic, and molecular remissions after allogeneic hematopoietic cell transplantation for refractory Sézary syndrome and mycosis fungoides. J Clin Oncol. 2005;23:6163–71.PubMedCrossRefGoogle Scholar
  129. 129.
    Duarte RF, Schmitz N, Servitje O, et al. Haematopoietic stem cell transplantation for patients with primary cutaneous T-cell lymphoma. Bone Marrow Transplant. 2008;41:597–604.PubMedCrossRefGoogle Scholar
  130. 130.
    Duvic M, Donato M, Dabaja B, et al. Total skin electron beam and non-myeloablative allogeneic hematopoietic stem-cell transplantation in advanced mycosis fungoides and Sezary syndrome. J Clin Oncol. 2010;28(14):2365–72.PubMedCrossRefGoogle Scholar
  131. 131.
    BioCryst Pharmaceuticals. Forodesine in the treatment of cutaneous T-cell lymphoma [ identifier NCT00501735]. US National Institutes of Health, [online]. Available from URL:
  132. 132.
    Rider DA, Havenith CEG, de Ridder R, Schuurman J, Favre C, Cooper JC, et al. A human CD4 monoclonal antibody for the treatment of T-cell lymphoma combines inhibition of T-cell signaling by a dual mechanism with potent Fc-dependent effector activity. Cancer Res. 2007;67:9945–53.PubMedCrossRefGoogle Scholar
  133. 133.•
    Reichert JM. Antibody-based therapeutics to watch in 2011. MAbs. 2011;3:76–99.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Tara Bloom
    • 1
  • Timothy M. Kuzel
    • 2
  • Christiane Querfeld
    • 3
  • Joan Guitart
    • 4
  • Steven T. Rosen
    • 5
  1. 1.Rush Medical CollegeChicagoUSA
  2. 2.Division of Hematology/OncologyNorthwestern UniversityChicagoUSA
  3. 3.Memorial Sloan Kettering Cancer CenterNew YorkUSA
  4. 4.Skin Cancer Institute of Northwestern UniversityChicagoUSA
  5. 5.Robert H. Lurie Comprehensive Cancer CenterNorthwestern UniversityChicagoUSA

Personalised recommendations