Current Treatment Options in Oncology

, Volume 12, Issue 2, pp 173–180

Gene Therapy for Mesothelioma

Malignant Mesothelioma

Opinion statement

Mesothelioma represents an especially good target for gene therapy since few effective therapies exist, the disease remained relatively localized until late in its course, the tumor can be accessed relatively easily through the chest wall, and the thin layer of mesothelial cells offers a large surface area for efficient, rapid, and diffuse gene transfer. Gene therapy trials in mesothelioma have shown safety, and some limited evidence of efficacy. We present a review of clinical trials that have been performed in mesothelioma and describe several new approaches currently being pursued.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as • Of importance •• Of major importance

  1. 1.
    Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358:2240–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Fischer A, Cavazzana-Calvo M. Gene therapy of inherited diseases. Lancet. 2008;371:2044–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Young LS, Searle PF, Onion D, Mautner V. Viral gene therapy strategies: from basic science to clinical application. J Pathol. 2006;208:299–318.PubMedCrossRefGoogle Scholar
  4. 4.
    Bachtarzi H, Stevenson M, Fisher K. Cancer gene therapy with targeted adenoviruses. Expert Opin Drug Deliv. 2008;5:1231–40.PubMedCrossRefGoogle Scholar
  5. 5.
    Douglas JT. Adenoviral vectors for gene therapy. Mol Biotechnol. 2007;36:71–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Breckpot K, Emeagi PU, Thielemans K. Lentiviral vectors for anti-tumor immunotherapy. Curr Gene Ther. 2008;8:438–48.PubMedCrossRefGoogle Scholar
  7. 7.
    Schambach A, Baum C. Clinical application of lentiviral vectors—concepts and practice. Curr Gene Ther. 2008;8:474–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21:583–93.PubMedCrossRefGoogle Scholar
  9. 9.
    Schultz BR, Chamberlain JS. Recombinant adeno-associated virus transduction and integration. Mol Ther. 2008;16:1189–99.PubMedCrossRefGoogle Scholar
  10. 10.
    Garber DA, O’Mara LA, Zhao J, Gangadhara S, An I, Feinberg MB. Expanding the repertoire of Modified Vaccinia Ankara-based vaccine vectors via genetic complementation strategies. PLoS One. 2009;4:e5445.PubMedCrossRefGoogle Scholar
  11. 11.
    Kirn DH, Thorne SH. Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer. 2009;9:64–71.PubMedCrossRefGoogle Scholar
  12. 12.
    Chesnoy S, Huang L. Structure and function of lipid-DNA complexes for gene delivery. Annu Rev Biophys Biomol Struct. 2000;29:27–47.PubMedCrossRefGoogle Scholar
  13. 13.
    Niidome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther. 2002;9:1647–52.PubMedCrossRefGoogle Scholar
  14. 14.
    Tiberghien P. Use of suicide genes in gene therapy. J Leukoc Biol. 1994;56:203–9.PubMedGoogle Scholar
  15. 15.
    Matthews T, Boehme R. Antiviral activity and mechanism of action of ganciclovir. Rev Infect Dis. 1988;10 Suppl 3:S490–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Sterman DH, Treat J, Litzky LA, Amin KM, Coonrod L, Molnar-Kimber K, et al. Adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patients with localized malignancy: results of a phase I clinical trial in malignant mesothelioma. Hum Gene Ther. 1998;9:1083–92.PubMedCrossRefGoogle Scholar
  17. 17.
    Sterman DH, Recio A, Vachani A, Sun J, Cheung L, DeLong P, et al. Long-term follow-up of patients with malignant pleural mesothelioma receiving high-dose adenovirus herpes simplex thymidine kinase/ganciclovir suicide gene therapy. Clin Cancer Res. 2005;11:7444–53.PubMedCrossRefGoogle Scholar
  18. 18.
    Harrison Jr LH, Schwarzenberger PO, Byrne PS, Marrogi AJ, Kolls JK, McCarthy KE. Gene-modified PA1-STK cells home to tumor sites in patients with malignant pleural mesothelioma. Ann Thorac Surg. 2000;70:407–11.PubMedCrossRefGoogle Scholar
  19. 19.
    Mukherjee S, Haenel T, Himbeck R, Scott B, Ramshaw I, Lake RA, et al. Replication-restricted vaccinia as a cytokine gene therapy vector in cancer: persistent transgene expression despite antibody generation. Cancer Gene Ther. 2000;7:663–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Pitako J, Squiban P, Acres B. A randomized phase II single center study of gene transfer-based non-specific immunotherapy of malignant mesothelioma (MM) by intratumoral injections of an interleukin-2 producing vero cells [abstract]. Proceedings of the American Society of Clinical Oncology 2003;22.Google Scholar
  21. 21.
    Sterman DH, Gillespie CT, Carroll RG, Coughlin CM, Lord EM, Sun J, et al. Interferon beta adenoviral gene therapy in a patient with ovarian cancer. Nat Clin Pract Oncol. 2006;3:633–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Sterman DH, Recio A, Carroll RG, Gillespie CT, Haas A, Vachani A, et al. A phase I clinical trial of single-dose intrapleural IFN-beta gene transfer for malignant pleural mesothelioma and metastatic pleural effusions: high rate of antitumor immune responses. Clin Cancer Res. 2007;13:4456–66.PubMedCrossRefGoogle Scholar
  23. 23.•
    Sterman DH, Recio A, Haas AR, Vachani A, Katz SI, Gillespie CT, et al. A phase I trial of repeated intrapleural adenoviral-mediated interferon-beta gene transfer for mesothelioma and metastatic pleural effusions. Mol Ther. 2010;18:852–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Lambright ES, Force SD, Lanuti ME, Wasfi DS, Amin KM, Albelda SM, et al. Efficacy of repeated adenoviral suicide gene therapy in a localized murine tumor model. Ann Thorac Surg. 2000;70:1865–70. discussion 1870–1.PubMedCrossRefGoogle Scholar
  25. 25.
    Kershaw MH, Teng MW, Smyth MJ, Darcy PK. Supernatural T cells: genetic modification of T cells for cancer therapy. Nat Rev Immunol. 2005;5:928–40.PubMedCrossRefGoogle Scholar
  26. 26.
    June CH. Adoptive T cell therapy for cancer in the clinic. J Clin Invest. 2007;117:1466–76.PubMedCrossRefGoogle Scholar
  27. 27.
    Bobisse S, Rondina M, Merlo A, Tisato V, Mandruzzato S, Amendola M, et al. Reprogramming T lymphocytes for melanoma adoptive immunotherapy by T-cell receptor gene transfer with lentiviral vectors. Cancer Res. 2009;69:9385–94.PubMedCrossRefGoogle Scholar
  28. 28.
    Yvon E, Del Vecchio M, Savoldo B, Hoyos V, Dutour A, Anichini A, et al. Immunotherapy of metastatic melanoma using genetically engineered GD2-specific T cells. Clin Cancer Res. 2009;15:5852–60.PubMedCrossRefGoogle Scholar
  29. 29.•
    Carpenito C, Milone MC, Hassan R, Simonet JC, Lakhal M, Suhoski MM, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc Natl Acad Sci U S A. 2009;106:3360–PubMedCrossRefGoogle Scholar
  30. 30.•
    Zhao Y, Moon E, Carpenito C, Paulos CM, Liu X, Brennan AL, et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res. 2010;70:9053–61. PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Thoracic Oncology Research LaboratoryUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Thoracic Oncology Research LaboratoryUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Thoracic Oncology Research LaboratoryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations