Current Treatment Options in Oncology

, Volume 9, Issue 1, pp 1–22 | Cite as

The Emerging Role of Anti-Angiogenic Therapy for Malignant Glioma

  • David A. Reardon
  • Annick Desjardins
  • Jeremy N. Rich
  • James J. Vredenburgh
Central Nervous System Malignancies

Opinion statement

Adults with glioblastoma multiforme (GBM), the most common primary brain tumor, have an unacceptably poor outcome with conventional cytotoxic therapies. Malignant gliomas are remarkably angiogenic, and vascular endothelial growth factor (VEGF) is the dominant pro-angiogenic factor. Recent clinical trials targeting VEGF signaling have achieved unprecedented rates of durable radiographic and clinical response, while also confirming adequate safety among recurrent malignant glioma patients. An array of additional clinical trials evaluating anti-angiogenic strategies are underway for both recurrent and newly diagnosed malignant glioma patients. Promising results of these approaches suggest that the treatment of GBM may represent an emerging paradigm of anti-angiogenic therapy.


Vascular Endothelial Growth Factor Bevacizumab Clin Oncol Irinotecan Temozolomide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

Papers of particular interest, published recently, has been highlighted as: •Of importance ••Of major importance

  1. 1.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al.: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005, 352(10):987–996PubMedGoogle Scholar
  2. 2.
    Simpson L, Galanis E: Recurrent glioblastoma multiforme: advances in treatment and promising drug candidates. Expert Rev Anticancer Ther 2006, 6(11):1593–1607PubMedGoogle Scholar
  3. 3.
    Folkman J: Tumor angiogenesis: therapeutic implications. N Engl J Med 1971, 285(21):1182–1186PubMedCrossRefGoogle Scholar
  4. 4.
    Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996, 86(3):353–364PubMedGoogle Scholar
  5. 5.
    Vajkoczy P, Schilling L, Ullrich A, Schmiedek P, Menger MD: Characterization of angiogenesis and microcirculation of high-grade glioma: an intravital multifluorescence microscopic approach in the athymic nude mouse. J Cereb Blood Flow Metab 1998, 18(5):510–520PubMedGoogle Scholar
  6. 6.
    Brem S, Cotran R, Folkman J: Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst 1972, 48(2):347–356PubMedGoogle Scholar
  7. 7.
    Schueneman AJ, Himmelfarb E, Geng L, Tan J, Donnelly E, Mendel D, et al.: SU11248 maintenance therapy prevents tumor regrowth after fractionated irradiation of murine tumor models. Cancer Res 2003, 63(14):4009–4016PubMedGoogle Scholar
  8. 8.
    Saleh M, Stacker SA, Wilks AF: Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res 1996;56(2):393–401PubMedGoogle Scholar
  9. 9.
    Rich JN, Sathornsumetee S, Keir ST, Kieran MW, Laforme A, Kaipainen A, et al.: ZD6474, a novel tyrosine kinase inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor, inhibits tumor growth of multiple nervous system tumors. Clin Cancer Res 2005, 11(22):8145–8157PubMedGoogle Scholar
  10. 10.
    Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A: Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994, 367(6463):576–579PubMedGoogle Scholar
  11. 11.
    Machein MR, Risau W, Plate KH: Antiangiogenic gene therapy in a rat glioma model using a dominant-negative vascular endothelial growth factor receptor 2. Hum Gene Ther 1999, 10(7):1117–1128PubMedGoogle Scholar
  12. 12.
    Kunkel P, Ulbricht U, Bohlen P, Brockmann MA, Fillbrandt R, Stavrou D, et al.: Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 2001, 61(18):6624–6628PubMedGoogle Scholar
  13. 13.
    Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, et al.: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993, 362(6423):841–844PubMedGoogle Scholar
  14. 14.
    Jones-Bolin S, Zhao H, Hunter K, Klein-Szanto A, Ruggeri B: The effects of the oral, pan-VEGF-R kinase inhibitor CEP-7055 and chemotherapy in orthotopic models of glioblastoma and colon carcinoma in mice. Mol Cancer Ther 2006, 5(7):1744–1753PubMedGoogle Scholar
  15. 15.
    Jane EP, Premkumar DR, Pollack IF: Coadministration of sorafenib with rottlerin potently inhibits cell proliferation and migration in human malignant glioma cells. J Pharmacol Exp Ther 2006, 319(3):1070–1080PubMedGoogle Scholar
  16. 16.
    Goudar RK, Shi Q, Hjelmeland MD, Keir ST, McLendon RE, Wikstrand CJ, et al.: Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol Cancer Ther 2005, 4(1):101–112PubMedGoogle Scholar
  17. 17.
    Goldbrunner RH, Bendszus M, Wood J, Kiderlen M, Sasaki M, Tonn JC: PTK787/ZK222584, an inhibitor of vascular endothelial growth factor receptor tyrosine kinases, decreases glioma growth and vascularization. Neurosurgery 2004, 55(2):426–432; discussion 432PubMedGoogle Scholar
  18. 18.
    Frederick B, Gustafson D, Bianco C, Ciardiello F, Dimery I, Raben D: ZD6474, an inhibitor of VEGFR and EGFR tyrosine kinase activity in combination with radiotherapy. Int J Radiat Oncol Biol Phys 2006, 64(1):33–37PubMedGoogle Scholar
  19. 19.
    de Bouard S, Herlin P, Christensen JG, Lemoisson E, Gauduchon P, Raymond E, et al.: Antiangiogenic and anti-invasive effects of sunitinib on experimental human glioblastoma. Neuro-oncology 2007, 9(4):412–423PubMedGoogle Scholar
  20. 20.
    Damiano V, Melisi D, Bianco C, Raben D, Caputo R, Fontanini G, et al.: Cooperative antitumor effect of multitargeted kinase inhibitor ZD6474 and ionizing radiation in glioblastoma. Clin Cancer Res 2005, 11(15):5639–5644PubMedGoogle Scholar
  21. 21.
    Cheng SY, Huang HJ, Nagane M, Ji XD, Wang D, Shih CC, et al. Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci USA 1996, 93(16):8502–8507PubMedGoogle Scholar
  22. 22.
    Albert JM, Cao C, Geng L, Leavitt L, Hallahan DE, Lu B: Integrin alpha v beta 3 antagonist Cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol Biol Phys 2006, 65(5):1536–1543PubMedGoogle Scholar
  23. 23.••
    Vredenburgh JJ, Desjardins A, Herndon JE II, Marcello J, Reardon DA, Quinn JA, et al.: Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 2007, 25(30):4722–4729PubMedGoogle Scholar
  24. 24.••
    Vredenburgh JJ, Desjardins A, Herndon JE II, Dowell JM, Reardon DA, Quinn JA, et al.: Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007, 13(4):1253–1259PubMedGoogle Scholar
  25. 25.
    Yap R, Veliceasa D, Emmenegger U, Kerbel RS, McKay LM, Henkin J, et al.: Metronomic low-dose chemotherapy boosts CD95-dependent antiangiogenic effect of the thrombospondin peptide ABT-510: a complementation antiangiogenic strategy. Clin Cancer Res 2005, 11(18):6678–6685PubMedGoogle Scholar
  26. 26.••
    Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, et al.: AZD2171, a Pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007, 11(1):83–95PubMedGoogle Scholar
  27. 27.
    Taga T, Suzuki A, Gonzalez-Gomez I, Gilles FH, Stins M, Shimada H, et al.: Alpha v-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int J Cancer 2002, 98(5):690–697PubMedGoogle Scholar
  28. 28.
    Smith JW: Cilengitide Merck. Curr Opin Investig Drugs 2003, 4(6):741–745PubMedGoogle Scholar
  29. 29.
    Yamada S, Bu XY, Khankaldyyan V, Gonzales-Gomez I, McComb JG, Laug WE: Effect of the angiogenesis inhibitor Cilengitide (EMD 121974) on glioblastoma growth in nude mice. Neurosurgery 2006;59(6):1304–1312; discussion 1312PubMedGoogle Scholar
  30. 30.
    Chatterjee S, Matsumura A, Schradermeier J, Gillespie GY: Human malignant glioma therapy using anti-alpha(v)beta3 integrin agents. J Neurooncol 2000, 46(2):135–144PubMedGoogle Scholar
  31. 31.
    Lamfers ML, Grill J, Dirven CM, Van Beusechem VW, Geoerger B, Van Den Berg J, et al. Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res 2002, 62(20):5736–5742PubMedGoogle Scholar
  32. 32.
    Tonn JC, Wunderlich S, Kerkau S, Klein CE, Roosen K: Invasive behaviour of human gliomas is mediated by interindividually different integrin patterns. Anticancer Res 1998, 18(4A):2599–2605PubMedGoogle Scholar
  33. 33.•
    Nabors LB, Mikkelsen T, Rosenfeld SS, Hochberg F, Akella NS, Fisher JD, et al.: Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J Clin Oncol 2007, 25(13):1651–1657PubMedGoogle Scholar
  34. 34.
    Eskens FA, Dumez H, Hoekstra R, Perschl A, Brindley C, Bottcher S, et al.: Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer 2003, 39(7):917–926PubMedGoogle Scholar
  35. 35.
    Reardon DA, Fink K, Nabors LB, Cloughesy T, Plotkin S, Schiff D, et al.: Phase IIa trial of cilengitide (EMD121974) single-agent therapy in patients (pts) with recurrent glioblastoma (GBM): EMD 121974-009. In 43rd Annual Meeting of American Society of Clinical Oncology. Edited by Grunberg SM. Chicago, IL: Lisa Greaves; 2007:75sGoogle Scholar
  36. 36.
    Stupp R, Goldbrunnr R, Neyns B, Schlegel U, Clement P, Grabenbauer GG, et al.: Phase I/IIa trial of cilengitide (EMD121974) and temozolomide with concomitant radiotherapy, followed by temozolomide and cilengitide maintenance therapy in patients (pts) with newly diagnosed glioblastoma (GBM). In 2007 ASCO Annual Meeting Proceedings. Edited by Grunberg SM. Chicago, IL: Lisa Greaves; 2007:75sGoogle Scholar
  37. 37.
    Singh RK, Gutman M, Bucana CD, Sanchez R, Llansa N, Fidler IJ: Interferons alpha and beta down-regulate the expression of basic fibroblast growth factor in human carcinomas. Proc Natl Acad Sci USA 1995, 92(10):4562–4566PubMedGoogle Scholar
  38. 38.
    Buckner JC, Brown LD, Kugler JW, Cascino TL, Krook JE, Mailliard JA, et al.: Phase II evaluation of recombinant interferon alpha and BCNU in recurrent glioma. J Neurosurg 1995, 82(3):430–435PubMedGoogle Scholar
  39. 39.
    Brandes AA, Scelzi E, Zampieri P, Rigon A, Rotilio A, Amista P, et al.: Phase II trial with BCNU plus alpha-interferon in patients with recurrent high-grade gliomas. Am J Clin Oncol 1997, 20(4):364–367PubMedGoogle Scholar
  40. 40.
    Fine HA, Wen PY, Robertson M, O’Neill A, Kowal J, Loeffler JS, et al.: A phase I trial of a new recombinant human beta-interferon (BG9015) for the treatment of patients with recurrent gliomas. Clin Cancer Res 1997, 3(3):381–387PubMedGoogle Scholar
  41. 41.
    Yung WK, Prados M, Levin VA, Fetell MR, Bennett J, Mahaley MS, et al.: Intravenous recombinant interferon beta in patients with recurrent malignant gliomas: a phase I/II study. J Clin Oncol 1991, 9(11):1945–1949PubMedGoogle Scholar
  42. 42.
    Kerbel RS, Kamen BA: The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 2004, 4(6):423–436PubMedGoogle Scholar
  43. 43.
    Kim JT, Kim JS, Ko KW, Kong DS, Kang CM, Kim MH, et al.: Metronomic treatment of temozolomide inhibits tumor cell growth through reduction of angiogenesis and augmentation of apoptosis in orthotopic models of gliomas. Oncol Rep 2006, 16(1):33–39PubMedGoogle Scholar
  44. 44.
    Son MJ, Kim JS, Kim MH, Song HS, Kim JT, Kim H, et al.: Combination treatment with temozolomide and thalidomide inhibits tumor growth and angiogenesis in an orthotopic glioma model. Int J Oncol 2006, 28(1):53–59PubMedGoogle Scholar
  45. 45.
    Bello L, Carrabba G, Giussani C, Lucini V, Cerutti F, Scaglione F, et al.: Low-dose chemotherapy combined with an antiangiogenic drug reduces human glioma growth in vivo. Cancer Res 2001, 61(20):7501–7506PubMedGoogle Scholar
  46. 46.
    Herrlinger U, Rieger J, Steinbach JP, Nagele T, Dichgans J, Weller M: UKT-04 trial of continuous metronomic low-dose chemotherapy with methotrexate and cyclophosphamide for recurrent glioblastoma. J Neurooncol 2005, 71(3):295–299PubMedGoogle Scholar
  47. 47.
    Tuettenberg J, Grobholz R, Korn T, Wenz F, Erber R, Vajkoczy P Continuous low-dose chemotherapy plus inhibition of cyclooxygenase-2 as an antiangiogenic therapy of glioblastoma multiforme. J Cancer Res Clin Oncol 2005, 131(1):31–40PubMedGoogle Scholar
  48. 48.
    Kesari S, Schiff D, Doherty L, Gigas DC, Batchelor TT, Muzikansky A, et al.: Phase II study of metronomic chemotherapy for recurrent malignant gliomas in adults. Neuro-oncology 2007, 9(3):354–363PubMedGoogle Scholar
  49. 49.
    Kieran MW, Turner CD, Rubin JB, Chi SN, Zimmerman MA, Chordas C, et al.: A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J Pediatr Hematol Oncol 2005, 27(11):573–581PubMedGoogle Scholar
  50. 50.
    Conrad C, Friedman HS, Reardon DA, Provenzale JM, Jackson E, Serajuddin H, et al.: A Phase I/II trial of single-agent PTK 787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in patients with recurrent glioblastoma multiforme (GBM). In Proceedings of American Society of Clinical Oncology. Edited by Grunberg SM. New Orleans, LA: Lisa Greaves;2004:110Google Scholar
  51. 51.
    Reardon DA, Friedman HS, Yung WKA, Brada M, Conrad C, Provenzale JM, et al.: A phase I/II trial of PTK787/ZK 222584 (PTK/ZK), a novel, oral angiogenesis inhibitor, in combination with either temozolomide or lomustine for patients with recurrent glioblastoma multiforme (GBM). In Proceedings of American Society of Clinical Oncology. Edited by Grunberg SM. New Orleans, LA: Lisa Greaves; 2004:110Google Scholar
  52. 52.•
    Pope WB, Lai A, Nghiemphu P, Mischel P, Cloughesy TF: MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 2006, 66(8):1258–1260PubMedGoogle Scholar
  53. 53.•
    Chen W, Delaloye S, Silverman DH, Geist C, Czernin J, Sayre J, et al.: Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 2007, 25(30):4714–4721PubMedGoogle Scholar
  54. 54.
    Raiser J, Gallot L, Levy RM, Getch C, Mellot A, Newman S, et al.: A phase II safety study of bevacizumab in patients with multiple recurrent or progressive malignant gliomas. In Twelfth Annual Meeting of the Society of Neuro-Oncology 2007, Dallas, TX. Edited by Yung A. 2007:530Google Scholar
  55. 55.•
    Gonzalez J, Kumar AJ, Conrad CA, Levin VA: Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 2007, 67(2):323–326PubMedGoogle Scholar
  56. 56.
    D’Amato RJ, Loughnan MS, Flynn E, Folkman J: Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 1994, 91(9):4082–4085PubMedGoogle Scholar
  57. 57.
    Marx GM, Pavlakis N, McCowatt S, Boyle FM, Levi JA, Bell DR, et al.: Phase II study of thalidomide in the treatment of recurrent glioblastoma multiforme. J Neurooncol 2001, 54(1):31–38PubMedGoogle Scholar
  58. 58.
    Short SC, Traish D, Dowe A, Hines F, Gore M, Brada M: Thalidomide as an anti-angiogenic agent in relapsed gliomas. J Neurooncol 2001, 51(1):41–45PubMedGoogle Scholar
  59. 59.
    Fine HA, Figg WD, Jaeckle K, Wen PY, Kyritsis AP, Loeffler JS, et al.: Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J Clin Oncol 2000, 18(4):708–715PubMedGoogle Scholar
  60. 60.
    Fine HA, Wen PY, Maher EA, Viscosi E, Batchelor T, Lakhani N, et al.: Phase II trial of thalidomide and carmustine for patients with recurrent high-grade gliomas. J Clin Oncol 2003, 21(12):2299–2304PubMedGoogle Scholar
  61. 61.
    Baumann F, Bjeljac M, Kollias SS, Baumert BG, Brandner S, Rousson V, et al.: Combined thalidomide and temozolomide treatment in patients with glioblastoma multiforme. J Neurooncol 2004, 67(1–2):191–200PubMedGoogle Scholar
  62. 62.
    Chang SM, Lamborn KR, Malec M, Larson D, Wara W, Sneed P, et al.: Phase II study of temozolomide and thalidomide with radiation therapy for newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2004, 60(2):353–357PubMedGoogle Scholar
  63. 63.
    Konner J, Dupont J: Use of soluble recombinant decoy receptor vascular endothelial growth factor trap (VEGF Trap) to inhibit vascular endothelial growth factor activity. Clin Colorectal Cancer 2004, 4(Suppl 2):S81–S85PubMedGoogle Scholar
  64. 64.
    Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, et al.: VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 2002, 99(17):11393–11398PubMedGoogle Scholar
  65. 65.•
    Wachsberger PR, Burd R, Cardi C, Thakur M, Daskalakis C, Holash J, et al.: VEGF trap in combination with radiotherapy improves tumor control in u87 glioblastoma. Int J Radiat Oncol Biol Phys 2007, 67(5):1526–1537PubMedGoogle Scholar
  66. 66.
    Baish JW, Jain RK: Fractals and cancer. Cancer Res 2000, 60(14):3683–3688PubMedGoogle Scholar
  67. 67.
    Yuan F, Salehi HA, Boucher Y, Vasthare US, Tuma RF, Jain RK: Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res 1994, 54(17):4564–4568PubMedGoogle Scholar
  68. 68.
    Plate KH, Mennel HD: Vascular morphology and angiogenesis in glial tumors. Exp Toxicol Pathol 1995, 47(2–3):89–94PubMedGoogle Scholar
  69. 69.
    Bullitt E, Zeng D, Gerig G, Aylward S, Joshi S, Smith JK, et al.: Vessel tortuosity and brain tumor malignancy: a blinded study. Acad Radiol 2005, 12(10):1232–1240PubMedGoogle Scholar
  70. 70.
    Deeken JF, Loscher W: The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 2007, 13(6):1663–1674PubMedGoogle Scholar
  71. 71.
    Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, et al.: Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov 2007, 6(8):650–661PubMedGoogle Scholar
  72. 72.
    Pardridge WM: Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 2003;3(2):90–105, 51PubMedGoogle Scholar
  73. 73.
    Bart J, Groen HJ, Hendrikse NH, van der Graaf WT, Vaalburg W, de Vries EG: The blood-brain barrier and oncology: new insights into function and modulation. Cancer Treat Rev 2000, 26(6):449–462PubMedGoogle Scholar
  74. 74.
    Liebner S, Fischmann A, Rascher G, Duffner F, Grote EH, Kalbacher H, et al.: Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol (Berl) 2000, 100(3):323–331Google Scholar
  75. 75.
    Shibata S: Ultrastructure of capillary walls in human brain tumors. Acta Neuropathol (Berl) 1989, 78(6):561–571Google Scholar
  76. 76.
    Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al.: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 1998, 95(8):4607–4612PubMedGoogle Scholar
  77. 77.
    Becker I, Becker KF, Meyermann R, Hollt V The multidrug-resistance gene MDR1 is expressed in human glial tumors. Acta Neuropathol (Berl) 1991, 82(6):516–519Google Scholar
  78. 78.
    Haga S, Hinoshita E, Ikezaki K, Fukui M, Scheffer GL, Uchiumi T, et al.: Involvement of the multidrug resistance protein 3 in drug sensitivity and its expression in human glioma. Jpn J Cancer Res 2001, 92(2):211–219PubMedGoogle Scholar
  79. 79.
    Regina A, Demeule M, Laplante A, Jodoin J, Dagenais C, Berthelet F, et al.: Multidrug resistance in brain tumors: roles of the blood-brain barrier. Cancer Metastasis Rev 2001, 20(1–2):13–25PubMedGoogle Scholar
  80. 80.
    Toth K, Vaughan MM, Peress NS, Slocum HK, Rustum YM: MDR1 P-glycoprotein is expressed by endothelial cells of newly formed capillaries in human gliomas but is not expressed in the neovasculature of other primary tumors. Am J Pathol 1996, 149(3):853–858PubMedGoogle Scholar
  81. 81.
    Muldoon LL, Soussain C, Jahnke K, Johanson C, Siegal T, Smith QR, et al.: Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 2007, 25(16):2295–2305PubMedGoogle Scholar
  82. 82.•
    Jain RK, Tong RT, Munn LL: Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res 2007, 67(6):2729–2735PubMedGoogle Scholar
  83. 83.
    Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 2001, 61(16):6020–6024PubMedGoogle Scholar
  84. 84.
    Ewing JR, Brown SL, Lu M, Panda S, Ding G, Knight RA, et al.: Model selection in magnetic resonance imaging measurements of vascular permeability: Gadomer in a 9L model of rat cerebral tumor. J Cereb Blood Flow Metab 2006, 26(3):310–320PubMedGoogle Scholar
  85. 85.
    Kaur B, Tan C, Brat DJ, Post DE, Van Meir EG: Genetic and hypoxic regulation of angiogenesis in gliomas. J Neurooncol 2004, 70(2):229–243PubMedGoogle Scholar
  86. 86.
    Kowanetz M, Ferrara N: Vascular endothelial growth factor signaling pathways: therapeutic perspective. Clin Cancer Res 2006, 12(17):5018–5022PubMedGoogle Scholar
  87. 87.
    Keyt BA, Berleau LT, Nguyen HV, Chen H, Heinsohn H, Vandlen R, et al.: The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem 1996, 271(13):7788–7795PubMedGoogle Scholar
  88. 88.
    Park JE, Keller GA, Ferrara N: The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 1993, 4(12):1317–1326PubMedGoogle Scholar
  89. 89.
    Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, et al.: Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000, 2(10):737–744PubMedGoogle Scholar
  90. 90.
    Salven P, Orpana A, Joensuu H: Leukocytes and platelets of patients with cancer contain high levels of vascular endothelial growth factor. Clin Cancer Res 1999, 5(3):487–491PubMedGoogle Scholar
  91. 91.
    Verheul HM, Hoekman K, Luykx-de Bakker S, Eekman CA, Folman CC, Broxterman HJ, et al.: Platelet: transporter of vascular endothelial growth factor. Clin Cancer Res 1997, 3(12 Pt 1):2187–2190PubMedGoogle Scholar
  92. 92.
    Mohle R, Green D, Moore MA, Nachman RL, Rafii S: Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci USA 1997, 94(2):663–668PubMedGoogle Scholar
  93. 93.
    Leon SP, Folkerth RD, Black PM: Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 1996, 77(2):362–372PubMedGoogle Scholar
  94. 94.
    Plate KH, Breier G, Weich HA, Mennel HD, Risau W: Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int J Cancer 1994, 59(4):520–529PubMedGoogle Scholar
  95. 95.
    Plate KH, Risau W: Angiogenesis in malignant gliomas. Glia 1995, 15(3):339–347PubMedGoogle Scholar
  96. 96.
    Plate KH, Breier G, Millauer B, Ullrich A, Risau W: Up-regulation of vascular endothelial growth factor and its cognate receptors in a rat glioma model of tumor angiogenesis. Cancer Res 1993, 53(23):5822–5827PubMedGoogle Scholar
  97. 97.
    Samoto K, Ikezaki K, Ono M, Shono T, Kohno K, Kuwano M, et al.: Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer Res 1995, 55(5):1189–1193PubMedGoogle Scholar
  98. 98.
    Schmidt NO, Westphal M, Hagel C, Ergun S, Stavrou D, Rosen EM, et al.: Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer 1999, 84(1):10–18PubMedGoogle Scholar
  99. 99.
    Fischer I, Gagner JP, Law M, Newcomb EW, Zagzag D: Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 2005, 15(4):297–310PubMedCrossRefGoogle Scholar
  100. 100.•
    Kargiotis O, Rao JS, Kyritsis AP: Mechanisms of angiogenesis in gliomas. J Neurooncol 2006, 78(3):281–293PubMedGoogle Scholar
  101. 101.
    Shweiki D, Itin A, Soffer D, Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992, 359(6398):843–845PubMedGoogle Scholar
  102. 102.
    Ferrara N, Gerber HP, LeCouter J: The biology of VEGF and its receptors. Nat Med 2003, 9(6):669–676PubMedGoogle Scholar
  103. 103.
    Parliament MB, Allalunis-Turner MJ, Franko AJ, Olive PL, Mandyam R, Santos C, et al.: Vascular endothelial growth factor expression is independent of hypoxia in human malignant glioma spheroids and tumours. Br J Cancer 2000, 82(3):635–641PubMedGoogle Scholar
  104. 104.
    Mizukami Y, Kohgo Y, Chung DC: Hypoxia inducible factor-1 independent pathways in tumor angiogenesis. Clin Cancer Res 2007, 13(19):5670–5674PubMedGoogle Scholar
  105. 105.
    Zagzag D, Zhong H, Scalzitti JM, Laughner E, Simons JW, Semenza GL: Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 2000, 88(11):2606–2618PubMedGoogle Scholar
  106. 106.
    Wang GL, Jiang BH, Rue EA, Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995, 92(12):5510–5514PubMedGoogle Scholar
  107. 107.
    Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML: Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 2002, 295(5556):858–861PubMedGoogle Scholar
  108. 108.
    Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG: Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-oncology 2005, 7(2):134–153PubMedGoogle Scholar
  109. 109.
    Pore N, Liu S, Haas-Kogan DA, O’Rourke DM, Maity A: PTEN mutation and epidermal growth factor receptor activation regulate vascular endothelial growth factor (VEGF) mRNA expression in human glioblastoma cells by transactivating the proximal VEGF promoter. Cancer Res 2003, 63(1):236–241PubMedGoogle Scholar
  110. 110.
    Maity A, Pore N, Lee J, Solomon D, O’Rourke DM: Epidermal growth factor receptor transcriptionally up-regulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3’-kinase and distinct from that induced by hypoxia. Cancer Res 2000, 60(20):5879–5886PubMedGoogle Scholar
  111. 111.
    Ostman A: PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma. Cytokine Growth Factor Rev 2004, 15(4):275–286PubMedGoogle Scholar
  112. 112.
    Ma D, Nutt CL, Shanehsaz P, Peng X, Louis DN, Kaetzel DM: Autocrine platelet-derived growth factor-dependent gene expression in glioblastoma cells is mediated largely by activation of the transcription factor sterol regulatory element binding protein and is associated with altered genotype and patient survival in human brain tumors. Cancer Res 2005, 65(13):5523–5534PubMedGoogle Scholar
  113. 113.••
    Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D: Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 2003, 111(9):1287–1295PubMedGoogle Scholar
  114. 114.
    Abounader R, Laterra J: Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro-oncology 2005, 7(4):436–451PubMedGoogle Scholar
  115. 115.
    Trojan J, Cloix JF, Ardourel MY, Chatel M, Anthony DD: Insulin-like growth factor type I biology and targeting in malignant gliomas. Neuroscience 2007, 145(3):795–811PubMedGoogle Scholar
  116. 116.
    Clarke K, Smith K, Gullick WJ, Harris AL Mutant epidermal growth factor receptor enhances induction of vascular endothelial growth factor by hypoxia and insulin-like growth factor-1 via a PI3 kinase dependent pathway. Br J Cancer 2001, 84(10):1322–1329PubMedGoogle Scholar
  117. 117.
    Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, et al.: Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 2006, 9(4):287–300PubMedGoogle Scholar
  118. 118.
    Li VW, Folkerth RD, Watanabe H, Yu C, Rupnick M, Barnes P, et al.: Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumours. Lancet 1994, 344(8915):82–86PubMedGoogle Scholar
  119. 119.
    Lamszus K, Heese O, Westphal M: Angiogenesis-related growth factors in brain tumors. Cancer Treat Res 2004, 117:169–190PubMedGoogle Scholar
  120. 120.
    Zagzag D, Miller DC, Sato Y, Rifkin DB, Burstein DE: Immunohistochemical localization of basic fibroblast growth factor in astrocytomas. Cancer Res 1990, 50(22):7393–7398PubMedGoogle Scholar
  121. 121.
    Vajkoczy P, Farhadi M, Gaumann A, Heidenreich R, Erber R, Wunder A, et al.: Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J Clin Invest 2002, 109(6):777–785PubMedGoogle Scholar
  122. 122.
    Grau SJ, Trillsch F, Herms J, Thon N, Nelson PJ, Tonn JC, et al.: Expression of VEGFR3 in glioma endothelium correlates with tumor grade. J Neurooncol 2007, 82(2):141–150PubMedGoogle Scholar
  123. 123.
    Dvorak HF: Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 2002, 20(21):4368–4380PubMedGoogle Scholar
  124. 124.
    Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC: Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 1997, 100(12):3131–3139PubMedGoogle Scholar
  125. 125.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al.: Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997, 275(5302):964–967PubMedGoogle Scholar
  126. 126.
    Rajantie I, Ilmonen M, Alminaite A, Ozerdem U, Alitalo K, Salven P: Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 2004, 104(7):2084–2086PubMedGoogle Scholar
  127. 127.
    Bertolini F, Shaked Y, Mancuso P, Kerbel RS: The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 2006, 6(11):835–845PubMedGoogle Scholar
  128. 128.
    Santarelli JG, Udani V, Yung CY, Cheshier S, Wagers A, Brekken RA, et al.: Preuss Resident Research Award: bone marrow-derived Flk-1-expressing CD34+ cells contribute to the endothelium of tumor vessels in mouse brain. Clin Neurosurg 2005, 52:384–388PubMedGoogle Scholar
  129. 129.
    Lamszus K, Heese O, Westphal M: Angiogenesis-related growth factors in brain tumors. Cancer Treat Res 2004, 117:169–190PubMedGoogle Scholar
  130. 130.
    Stefanik DF, Rizkalla LR, Soi A, Goldblatt SA, Rizkalla WM: Acidic and basic fibroblast growth factors are present in glioblastoma multiforme. Cancer Res 1991, 51(20):5760–5765PubMedGoogle Scholar
  131. 131.
    Ryuto M, Ono M, Izumi H, Yoshida S, Weich HA, Kohno K, et al.: Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. J Biol Chem 1996, 271(45):28220–28228PubMedGoogle Scholar
  132. 132.
    Brat DJ, Bellail AC, Van Meir EG: The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-oncology 2005, 7(2):122–133PubMedGoogle Scholar
  133. 133.
    Desbaillets I, Diserens AC, de Tribolet N, Hamou MF, Van Meir EG: Regulation of interleukin-8 expression by reduced oxygen pressure in human glioblastoma. Oncogene 1999, 18(7):1447–1456PubMedGoogle Scholar
  134. 134.
    Salmaggi A, Eoli M, Frigerio S, Silvani A, Gelati M, Corsini E, et al.: Intracavitary VEGF, bFGF, IL-8, IL-12 levels in primary and recurrent malignant glioma. J Neurooncol 2003, 62(3):297–303PubMedGoogle Scholar
  135. 135.
    Heyns AD, Eldor A, Vlodavsky I, Kaiser N, Fridman R, Panet A: The antiproliferative effect of interferon and the mitogenic activity of growth factors are independent cell cycle events. Studies with vascular smooth muscle cells and endothelial cells. Exp Cell Res 1985, 161(2):297–306PubMedGoogle Scholar
  136. 136.
    Deininger MH, Weller M, Streffer J, Mittelbronn M, Meyermann R: Patterns of cyclooxygenase-1 and -2 expression in human gliomas in vivo. Acta Neuropathol (Berl) 1999, 98(3):240–244Google Scholar
  137. 137.
    Harrigan MR: Angiogenic factors in the central nervous system. Neurosurgery 2003, 53(3):639–660; discussion 660–61PubMedGoogle Scholar
  138. 138.
    Guo W, Giancotti FG: Integrin signalling during tumour progression. Nat Rev 2004, 5(10):816–826Google Scholar
  139. 139.
    Lakka SS, Gondi CS, Rao JS: Proteases and glioma angiogenesis. Brain Pathol 2005, 15(4):327–341PubMedCrossRefGoogle Scholar
  140. 140.
    Serini G, Valdembri D, Bussolino F: Integrins and angiogenesis: a sticky business. Exp Cell Res 2006, 312(5):651–658PubMedGoogle Scholar
  141. 141.
    Wang D, Anderson JC, Gladson CL The role of the extracellular matrix in angiogenesis in malignant glioma tumors. Brain Pathol 2005, 15(4):318–326PubMedCrossRefGoogle Scholar
  142. 142.
    Bello L, Francolini M, Marthyn P, Zhang J, Carroll RS, Nikas DC, et al.: Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery 2001, 49(2):380–389; discussion 390PubMedGoogle Scholar
  143. 143.
    Abdollahi A, Griggs DW, Zieher H, Roth A, Lipson KE, Saffrich R, et al.: Inhibition of alpha(v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy. Clin Cancer Res 2005, 11(17):6270–6279PubMedGoogle Scholar
  144. 144.
    Stan AC, Nemati MN, Pietsch T, Walter GF, Dietz H: In vivo inhibition of angiogenesis and growth of the human U-87 malignant glial tumor by treatment with an antibody against basic fibroblast growth factor. J Neurosurg 1995, 82(6):1044–1052PubMedGoogle Scholar
  145. 145.
    Yamada SM, Yamaguchi F, Brown R, Berger MS, Morrison RS: Suppression of glioblastoma cell growth following antisense oligonucleotide-mediated inhibition of fibroblast growth factor receptor expression. Glia 1999, 28(1):66–76PubMedGoogle Scholar
  146. 146.
    Brockmann MA, Papadimitriou A, Brandt M, Fillbrandt R, Westphal M, Lamszus K: Inhibition of intracerebral glioblastoma growth by local treatment with the scatter factor/hepatocyte growth factor-antagonist NK4. Clin Cancer Res 2003, 9(12):4578–4585PubMedGoogle Scholar
  147. 147.
    Bello L, Lucini V, Giussani C, Carrabba G, Pluderi M, Scaglione F, et al.: IS20I, a specific alphavbeta3 integrin inhibitor, reduces glioma growth in vivo. Neurosurgery 2003;52(1):177–185; discussion 185–186PubMedGoogle Scholar
  148. 148.
    Portnow J, Suleman S, Grossman SA, Eller S, Carson K: A cyclooxygenase-2 (COX-2) inhibitor compared with dexamethasone in a survival study of rats with intracerebral 9L gliosarcomas. Neuro-oncology 2002, 4(1):22–25PubMedGoogle Scholar
  149. 149.
    Bello L, Giussani C, Carrabba G, Pluderi M, Lucini V, Pannacci M, et al.: Suppression of malignant glioma recurrence in a newly developed animal model by endogenous inhibitors. Clin Cancer Res 2002, 8(11):3539–3548PubMedGoogle Scholar
  150. 150.
    Read TA, Farhadi M, Bjerkvig R, Olsen BR, Rokstad AM, Huszthy PC, et al.: Intravital microscopy reveals novel antivascular and antitumor effects of endostatin delivered locally by alginate-encapsulated cells. Cancer Res 2001, 61(18):6830–6837PubMedGoogle Scholar
  151. 151.
    Kirsch M, Strasser J, Allende R, Bello L, Zhang J, Black PM: Angiostatin suppresses malignant glioma growth in vivo. Cancer Res 1998, 58(20):4654–4659PubMedGoogle Scholar
  152. 152.
    Haviv F, Bradley MF, Kalvin DM, Schneider AJ, Davidson DJ, Majest SM, et al.: Thrombospondin-1 mimetic peptide inhibitors of angiogenesis and tumor growth: design, synthesis, and optimization of pharmacokinetics and biological activities. J Med Chem 2005, 48(8):2838–2846PubMedGoogle Scholar
  153. 153.
    Willett CG, Kozin SV, Duda DG, di Tomaso E, Kozak KR, Boucher Y, et al.: Combined vascular endothelial growth factor-targeted therapy and radiotherapy for rectal cancer: theory and clinical practice. Semin Oncol 2006, 33(5 Suppl 10):S35–40PubMedGoogle Scholar
  154. 154.•
    Kerbel RS: Antiangiogenic therapy: a universal chemosensitization strategy for cancer? Science 2006, 312(5777):1171–1175PubMedGoogle Scholar
  155. 155.•
    Shaked Y, Kerbel RS: Antiangiogenic strategies on defense: on the possibility of blocking rebounds by the tumor vasculature after chemotherapy. Cancer Res 2007, 67(15):7055–7058PubMedGoogle Scholar
  156. 156.
    Gorski DH, Beckett MA, Jaskowiak NT, Calvin DP, Mauceri HJ, Salloum RM, et al.: Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 1999, 59(14):3374–3378PubMedGoogle Scholar
  157. 157.
    Jain RK: Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 2001, 7(9):987–989PubMedGoogle Scholar
  158. 158.•
    Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005, 307(5706):58–62PubMedGoogle Scholar
  159. 159.
    Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 2004, 6(6):553–563PubMedGoogle Scholar
  160. 160.
    Jain RK, Safabakhsh N, Sckell A, Chen Y, Jiang P, Benjamin L, et al.: Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci USA 1998, 95(18):10820–10825PubMedGoogle Scholar
  161. 161.
    Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK: Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 2004, 64(11):3731–3736PubMedGoogle Scholar
  162. 162.••
    Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, et al.: Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 2004, 10(2):145–147PubMedGoogle Scholar
  163. 163.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al.: Identification of a cancer stem cell in human brain tumors. Cancer Res 2003, 63(18):5821–5828PubMedGoogle Scholar
  164. 164.
    Singh SK, Clarke ID, Hide T, Dirks PB: Cancer stem cells in nervous system tumors. Oncogene 2004, 23(43):7267–7273PubMedGoogle Scholar
  165. 165.
    Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al.: Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004, 64(19):7011–7021PubMedGoogle Scholar
  166. 166.••
    Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, et al.: Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 2006, 66(16):7843–7848PubMedGoogle Scholar
  167. 167.••
    Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, et al.: A perivascular niche for brain tumor stem cells. Cancer Cell 2007, 11(1):69–82PubMedGoogle Scholar
  168. 168.•
    Folkins C, Man S, Xu P, Shaked Y, Hicklin DJ, Kerbel RS: Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 2007, 67(8):3560–3564PubMedGoogle Scholar
  169. 169.•
    Gilbertson RJ, Rich JN: Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 2007, 7(10):733–736PubMedGoogle Scholar
  170. 170.
    Jain RK, Duda DG, Clark JW, Loeffler JS: Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 2006, 3(1):24–40PubMedGoogle Scholar
  171. 171.
    Goli KJ, Desjardins A, Herndon JE, Rich J, Reardon DA, Quinn JA, et al.: Phase II trial of bevacizumab and irinotecan in the treatment of malignant gliomas. In 43rd Annual Meeting of American Society of Clinical Oncology. Edited by Grunberg SM. Chicago, IL; 2007:75SGoogle Scholar
  172. 172.
    Friedman HS, Petros WP, Friedman AH, Schaaf LJ, Kerby T, Lawyer J, et al.: Irinotecan therapy in adults with recurrent or progressive malignant glioma. J Clin Oncol 1999, 17(5):1516–1525PubMedGoogle Scholar
  173. 173.
    Batchelor TT, Gilbert MR, Supko JG, Carson KA, Nabors LB, Grossman SA, et al.: Phase 2 study of weekly irinotecan in adults with recurrent malignant glioma: final report of NABTT 97-11. Neuro-oncol 2004, 6(1):21–27PubMedGoogle Scholar
  174. 174.
    Cloughesy TF, Filka E, Kuhn J, Nelson G, Kabbinavar F, Friedman H, et al.: Two studies evaluating irinotecan treatment for recurrent malignant glioma using an every-3-week regimen. Cancer 2003, 97(9 Suppl):2381–2386PubMedGoogle Scholar
  175. 175.
    Prados MD, Lamborn K, Yung WK, Jaeckle K, Robins HI, Mehta M, et al.: A phase 2 trial of irinotecan (CPT-11) in patients with recurrent malignant glioma: a North American Brain Tumor Consortium study. Neuro-oncology 2006, 8(2):189–193PubMedGoogle Scholar
  176. 176.
    Chamberlain MC Salvage chemotherapy with CPT-11 for recurrent glioblastoma multiforme. J Neurooncol 2002, 56(2):183–188PubMedGoogle Scholar
  177. 177.
    Gilbert MR, Supko JG, Batchelor T, Lesser G, Fisher JD, Piantadosi S, et al. Phase I clinical and pharmacokinetic study of irinotecan in adults with recurrent malignant glioma. Clin Cancer Res 2003, 9(8):2940–2949PubMedGoogle Scholar
  178. 178.
    Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG: Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990, 8(7):1277–1280PubMedGoogle Scholar
  179. 179.
    Yung WK, Prados MD, Yaya-Tur R, Rosenfeld SS, Brada M, Friedman HS, et al.: Multicenter phase II trial of temozolomide in patients with anaplastic astrocytoma or anaplastic oligoastrocytoma at first relapse. Temodal Brain Tumor Group. J Clin Oncol 1999, 17(9):2762–2771PubMedGoogle Scholar
  180. 180.
    Yung WK, Albright RE, Olson J, Fredericks R, Fink K, Prados MD, et al.: A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer 2000, 83(5):588–593PubMedGoogle Scholar
  181. 181.
    Wong ET, Hess KR, Gleason MJ, Jaeckle KA, Kyritsis AP, Prados MD, et al.: Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol 1999, 17(8):2572–2578PubMedGoogle Scholar
  182. 182.
    Geng L, Donnelly E, McMahon G, Lin PC, Sierra-Rivera E, Oshinka H, et al.: Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res 2001, 61(6):2413–2419PubMedGoogle Scholar
  183. 183.
    Kozin SV, Boucher Y, Hicklin DJ, Bohlen P, Jain RK, Suit HD: Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res 2001, 61(1):39–44PubMedGoogle Scholar
  184. 184.
    Gingras MC, Roussel E, Bruner JM, Branch CD, Moser RP: Comparison of cell adhesion molecule expression between glioblastoma multiforme and autologous normal brain tissue. J Neuroimmunol 1995, 57(1–2):143–153PubMedGoogle Scholar
  185. 185.
    Gladson CL: Expression of integrin alpha v beta 3 in small blood vessels of glioblastoma tumors. J Neuropathol Exp Neurol 1996, 55(11):1143–1149PubMedCrossRefGoogle Scholar
  186. 186.
    Tucker GC: Integrins: molecular targets in cancer therapy. Curr Oncol Rep 2006, 8(2):96–103PubMedGoogle Scholar
  187. 187.
    Taal W, Brandsma D, de Bruin HG, Bromberg JE, Swaak-Kragten AT, Eijkenboom WM, et al.: The Incidence of Pseudo-progression in a cohort of malignant glioma patients treated with chemo-radiation with temozolomide. In The American Society of Clinical Oncology 43rd Annual Meeting. Edited by Grunberg SM. Chicago, IL: Lisa Greaves; 2007:77sGoogle Scholar
  188. 188.
    Chen W, Silverman DH, Delaloye S, Czernin J, Kamdar N, Pope W, et al.: 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 2006, 47(6):904–911PubMedGoogle Scholar
  189. 189.
    Popperl G, Kreth FW, Herms J, Koch W, Mehrkens JH, Gildehaus FJ, et al.: Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J Nucl Med 2006, 47(3):393–403PubMedGoogle Scholar
  190. 190.
    Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, et al.: Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 2005, 46(6):945–952PubMedGoogle Scholar
  191. 191.
    Rock JP, Hearshen D, Scarpace L, Croteau D, Gutierrez J, Fisher JL, et al.: Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 2002, 51(4):912–919; discussion 919–920PubMedGoogle Scholar
  192. 192.
    Cha S, Yang L, Johnson G, Lai A, Chen MH, Tihan T, et al.: Comparison of microvascular permeability measurements, K(trans), determined with conventional steady-state T1-weighted and first-pass T2*-weighted MR imaging methods in gliomas and meningiomas. AJNR Am J Neuroradiol 2006, 27(2):409–417PubMedGoogle Scholar
  193. 193.
    Hylton N: Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker. J Clin Oncol 2006, 24(20):3293–3298PubMedGoogle Scholar
  194. 194.
    Jackson A, O’Connor JP, Parker GJ, Jayson GC: Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance imaging. Clin Cancer Res 2007, 13(12):3449–3459PubMedGoogle Scholar
  195. 195.
    Fuss M, Wenz F, Essig M, Muenter M, Debus J, Herman TS, et al.: Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy. Int J Radiat Oncol Biol Phys 2001, 51(2):478–482PubMedGoogle Scholar
  196. 196.
    Essig M, Wenz F, Scholdei R, Bruning R, Berchtenbreiter C, Meurer M, et al.: Dynamic susceptibility contrast-enhanced echo-planar imaging of cerebral gliomas. Effect of contrast medium extravasation. Acta Radiol 2002, 43(4):354–359PubMedGoogle Scholar
  197. 197.
    Provenzale JM, Wang GR, Brenner T, Petrella JR, Sorensen AG: Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 2002, 178(3):711–716PubMedGoogle Scholar
  198. 198.
    Warmuth C, Gunther M, Zimmer C: Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 2003, 228(2):523–532PubMedGoogle Scholar
  199. 199.
    Brubaker LM, Bullitt E, Yin C, Van Dyke T, Lin W: Magnetic resonance angiography visualization of abnormal tumor vasculature in genetically engineered mice. Cancer Res 2005, 65(18):8218–8223PubMedGoogle Scholar
  200. 200.
    Bullitt E, Reardon DA, Smith JK: A review of micro- and macrovascular analyses in the assessment of tumor-associated vasculature as visualized by MR. NeuroImage 2007, 37(Suppl 1):S116–S119PubMedGoogle Scholar
  201. 201.
    Verheul HM, Pinedo HM: Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition. Nat Rev Cancer 2007, 7(6):475–485PubMedGoogle Scholar
  202. 202.
    Scappaticci FA, Skillings JR, Holden SN, Gerber HP, Miller K, Kabbinavar F, et al.: Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst 2007, 99(16):1232–1239PubMedGoogle Scholar
  203. 203.
    Glusker P, Recht L, Lane B: Reversible posterior leukoencephalopathy syndrome and bevacizumab. N Engl J Med 2006, 354(9):980–982; discussion 982PubMedGoogle Scholar
  204. 204.
    Ozcan C, Wong SJ, Hari P: Reversible posterior leukoencephalopathy syndrome and bevacizumab. N Engl J Med 2006, 354(9):980–982; discussion 982PubMedGoogle Scholar
  205. 205.
    Jubb AM, Oates AJ, Holden S, Koeppen H: Predicting benefit from anti-angiogenic agents in malignancy. Nat Rev Cancer 2006, 6(8):626–635PubMedGoogle Scholar
  206. 206.•
    Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH: Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst 2005, 97(3):172–187PubMedCrossRefGoogle Scholar
  207. 207.
    Jubb AM, Hurwitz HI, Bai W, Holmgren EB, Tobin P, Guerrero AS, et al.: Impact of vascular endothelial growth factor-A expression, thrombospondin-2 expression, and microvessel density on the treatment effect of bevacizumab in metastatic colorectal cancer. J Clin Oncol 2006, 24(2):217–227PubMedGoogle Scholar
  208. 208.
    Willett CG, Boucher Y, Duda DG, di Tomaso E, Munn LL, Tong RT, et al.: Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol 2005, 23(31):8136–8139PubMedGoogle Scholar
  209. 209.
    Faivre S, Delbaldo C, Vera K, Robert C, Lozahic S, Lassau N, et al.: Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 2006, 24(1):25–35PubMedGoogle Scholar
  210. 210.
    Motzer RJ, Michaelson MD, Redman BG, Hudes GR, Wilding G, Figlin RA, et al.: Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 2006, 24(1):16–24PubMedGoogle Scholar
  211. 211.
    Drevs J, Zirrgiebel U, Schmidt-Gersbach CI, Mross K, Medinger M, Lee L, et al.: Soluble markers for the assessment of biological activity with PTK787/ZK 222584 (PTK/ZK), a vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor in patients with advanced colorectal cancer from two phase I trials. Ann Oncol 2005, 16(4):558–565PubMedGoogle Scholar
  212. 212.
    Duda DG, Cohen KS, di Tomaso E, Au P, Klein RJ, Scadden DT, et al.: Differential CD146 expression on circulating versus tissue endothelial cells in rectal cancer patients: implications for circulating endothelial and progenitor cells as biomarkers for antiangiogenic therapy. J Clin Oncol 2006, 24(9):1449–1453PubMedGoogle Scholar
  213. 213.
    Kerbel RS, Yu J, Tran J, Man S, Viloria-Petit A, Klement G, et al.: Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev 2001, 20(1–2):79–86PubMedGoogle Scholar
  214. 214.
    Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP, et al.: Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 2004, 18(2):338–340PubMedGoogle Scholar
  215. 215.
    Huang J, Soffer SZ, Kim ES, McCrudden KW, Huang J, New T, et al.: Vascular remodeling marks tumors that recur during chronic suppression of angiogenesis. Mol Cancer Res 2004, 2(1):36–42PubMedGoogle Scholar
  216. 216.
    De Bouard S, Guillamo JS, Christov C, Lefevre N, Brugieres P, Gola E, et al.: Antiangiogenic therapy against experimental glioblastoma using genetically engineered cells producing interferon-alpha, angiostatin, or endostatin. Hum Gene Ther 2003, 14(9):883–895PubMedGoogle Scholar
  217. 217.
    Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM: Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 2003, 3(4):347–361PubMedGoogle Scholar
  218. 218.
    Lamszus K, Kunkel P, Westphal M: Invasion as limitation to anti-angiogenic glioma therapy. Acta Neurochir Suppl 2003, 88:169–177PubMedGoogle Scholar
  219. 219.
    Rubenstein JL, Kim J, Ozawa T, Zhang M, Westphal M, Deen DF, et al.: Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2000, 2(4):306–314PubMedGoogle Scholar
  220. 220.
    Farhadi MR, Capelle HH, Erber R, Ullrich A, Vajkoczy P: Combined inhibition of vascular endothelial growth factor and platelet-derived growth factor signaling: effects on the angiogenesis, microcirculation, and growth of orthotopic malignant gliomas. J Neurosurg 2005, 102(2):363–370PubMedGoogle Scholar

Copyright information

© Current Medicine Group LLC 2008

Authors and Affiliations

  • David A. Reardon
    • 1
  • Annick Desjardins
    • 2
  • Jeremy N. Rich
    • 3
  • James J. Vredenburgh
    • 4
  1. 1.Department of Surgery, Division of NeurosurgeryDuke University Medical CenterDurhamUSA
  2. 2.Neuro-Oncology Program, Departments of Surgery and Medicine, Division of NeurosurgeryDuke University Medical CenterDurhamUSA
  3. 3.Department of MedicineDuke University Medical CenterDurhamUSA
  4. 4.Department of MedicineDuke University Medical CenterDurhamUSA

Personalised recommendations