Current Treatment Options in Oncology

, Volume 8, Issue 5, pp 339–351

Progress in the Development of Prognostic and Predictive Markers for Gastrointestinal Malignancies

Gastrointestinal Malignancies

Opinion statement

Gastrointestinal cancers remain a significant cause of morbidity and mortality. While increasing therapeutic options have improved outcomes for many patients, they have also complicated treatment decision-making. Unfortunately, most patients with advanced gastrointestinal malignancies die from their disease. Prognostic and predictive markers could improve treatment significantly by identifying patients who may or may not require a given therapy, and determining those most likely to benefit from a therapy. Candidates for such markers include blood antigens and circulating tumor cells, tumor enzyme and gene expression, and pharmacodynamic endpoints. In this review, we summarize reported and ongoing research to define and validate prognostic and predictive markers in gastrointestinal malignancies, with an emphasis on colorectal cancer and brief overview of pancreatic and neuroendocrine tumors.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Papers of particular interest, published recently, have been highlighted as: •Of importance ••Of major importance

  1. 1.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin 2007;57(1):43–66.PubMedCrossRefGoogle Scholar
  2. 2.
    De Gramont A, Boni C, Navarro M, et al.: Oxaliplatin/5FU/LV in adjuvant colon cancer: updated efficacy results of the MOSAIC trial, including survival, with a median follow-up of six years. J Clin Oncol, 2007 ASCO Annual Meeting Proceedings Part I Vol 25, No 18S (June 20 Supplement), 2007: 4007.Google Scholar
  3. 3.
    Saltz LB, Cox JV, Blanke C, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med 2000;343(13):905–914.PubMedCrossRefGoogle Scholar
  4. 4.
    Burris HA, III, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997;15(6):2403–2413.PubMedGoogle Scholar
  5. 5.
    Oettle H, Post S, Neuhaus P, et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA 2007;297(3):267–277.PubMedCrossRefGoogle Scholar
  6. 6.
    Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007;25(15):1960–1966.PubMedCrossRefGoogle Scholar
  7. 7.•
    Sargent DJ, Conley BA, Allegra C, Collette L. Clinical trial designs for predictive marker validation in cancer treatment trials. J Clin Oncol 2005;23(9):2020–2027.PubMedCrossRefGoogle Scholar
  8. 8.
    Wanebo HJ, Rao B, Pinsky CM, et al. Preoperative carcinoembryonic antigen level as a prognostic indicator in colorectal cancer. N Engl J Med 1978;299(9):448–451.PubMedCrossRefGoogle Scholar
  9. 9.
    Wolmark N, Fisher B, Wieand HS, et al. The prognostic significance of preoperative carcinoembryonic antigen levels in colorectal cancer. Results from NSABP (National Surgical Adjuvant Breast and Bowel Project) clinical trials. Ann Surg 1984;199(4):375–382.PubMedCrossRefGoogle Scholar
  10. 10.
    Park YJ, Park KJ, Park JG, Lee KU, Choe KJ, Kim JP. Prognostic factors in 2230 Korean colorectal cancer patients: analysis of consecutively operated cases. World J Surg 1999;23(7):721–726.PubMedCrossRefGoogle Scholar
  11. 11.
    Park YJ, Youk EG, Choi HS, et al. Experience of 1446 rectal cancer patients in Korea and analysis of prognostic factors. Int J Colorectal Dis 1999;14(2):101–106.PubMedCrossRefGoogle Scholar
  12. 12.
    Fong Y, Fortner J, Sun RL, Brennan MF, Blumgart LH: Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 1999, 230(3):309–318; discussion 18–21.Google Scholar
  13. 13.
    Nordlinger B, Guiguet M, Vaillant JC, et al. Surgical resection of colorectal carcinoma metastases to the liver. A prognostic scoring system to improve case selection, based on 1568 patients. Association Francaise de Chirurgie. Cancer 1996;77(7):1254–1262.PubMedCrossRefGoogle Scholar
  14. 14.
    Kemeny N, Niedzwiecki D, Shurgot B, Oderman P. Prognostic variables in patients with hepatic metastases from colorectal cancer. Importance of medical assessment of liver involvement. Cancer 1989;63(4):742–747.PubMedCrossRefGoogle Scholar
  15. 15.
    Chang AE, Steinberg SM, Culnane M, White DE. Determinants of survival in patients with unresectable colorectal liver metastases. J Surg Oncol 1989;40(4):245–251.PubMedCrossRefGoogle Scholar
  16. 16.
    Koehne C, Bajetta E, Lin, E, et al.: Results of an interim analysis of a multinational randomized, double-blind, phase III study in patients (pts) with previously treated metastatic colorectal cancer (mCRC) receiving FOLFOX4 and PTK787/ZK 222584 (PTK/ZK) or placebo (CONFIRM 2). J Clin Oncol, 2006 ASCO Annual Meeting Proceedings Part I Vol 24, No 18S (June 20 Supplement), 2006:3508.Google Scholar
  17. 17.
    Hecht JR, Trarbach T, Jaeger E, et al.: A randomized, double-blind, placebo-controlled, phase III study in patients (pts) with metastatic adenocarcinoma of the colon or rectum receiving first-line chemotherapy with oxaliplatin/5-fluorouracil/leucovorin and PTK787/ZK 222584 or placebo (CONFIRM-1). J Clin Oncol 2005, 23(16S):3.Google Scholar
  18. 18.
    Fyfe GA HH, Fehrenbacher L, et al. Bevacizumab plus irinotecan/5FU/leucovorin for the treatment of metastatic colorectal cancer results in survival benefit in all pre-specified patient subgroups. J Clin Oncol 2004; 22(24S):3617.Google Scholar
  19. 19.
    Birbe R, Palazzo JP, Walters R, Weinberg D, Schulz S, Waldman SA. Guanylyl cyclase C is a marker of intestinal metaplasia, dysplasia, and adenocarcinoma of the gastrointestinal tract. Hum Pathol 2005;36(2):170–179.PubMedCrossRefGoogle Scholar
  20. 20.
    Schulz S, Hyslop T, Haaf J, et al. A validated quantitative assay to detect occult micrometastases by reverse transcriptase-polymerase chain reaction of guanylyl cyclase C in patients with colorectal cancer. Clin Cancer Res 2006;12(15):4545–4552.PubMedCrossRefGoogle Scholar
  21. 21.
    Cagir B, Gelmann A, Park J, et al. Guanylyl cyclase C messenger RNA is a biomarker for recurrent stage II colorectal cancer. Ann Intern Med 1999;131(11):805–812.PubMedGoogle Scholar
  22. 22.
    Bustin SA, Siddiqi S, Ahmed S, Hands R, Dorudi S. Quantification of cytokeratin 20, carcinoembryonic antigen and guanylyl cyclase C mRNA levels in lymph nodes may not predict treatment failure in colorectal cancer patients. Int J Cancer 2004;108(3):412–417.PubMedCrossRefGoogle Scholar
  23. 23.
    Peltomaki P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol 2003;21(6):1174–1179.PubMedCrossRefGoogle Scholar
  24. 24.••
    Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 2003;349(3):247–257.PubMedCrossRefGoogle Scholar
  25. 25.•
    Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 2005;23(3):609–618.PubMedCrossRefGoogle Scholar
  26. 26.
    Kim GP, Colangelo LH, Wieand HS, et al. Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J Clin Oncol 2007;25(7):767–772.PubMedCrossRefGoogle Scholar
  27. 27.
    Sinicrope FA, Rego RL, Halling KC, et al. Prognostic impact of microsatellite instability and DNA ploidy in human colon carcinoma patients. Gastroenterology 2006;131(3):729–737.PubMedCrossRefGoogle Scholar
  28. 28.
    Cortellino S, Turner D, Masciullo V, et al.: The base excision repair enzyme MED1 mediates DNA damage response to antitumor drugs and is associated with mismatch repair system integrity. Proc Natl Acad Sci U S A 2003, 100(25):15071–15076.Google Scholar
  29. 29.
    Jover R, Zapater P, Castells A, et al. Mismatch repair status in the prediction of benefit from adjuvant fluorouracil chemotherapy in colorectal cancer. Gut 2006;55(6):848–855.PubMedCrossRefGoogle Scholar
  30. 30.
    Benatti P, Gafa R, Barana D, et al. Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res 2005;11(23):8332–8340.PubMedCrossRefGoogle Scholar
  31. 31.••
    Watanabe T, Wu TT, Catalano PJ, et al. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. N Engl J Med 2001;344(16):1196–1206.PubMedCrossRefGoogle Scholar
  32. 32.
    Sarli L, Bottarelli L, Bader G, et al. Association between recurrence of sporadic colorectal cancer, high level of microsatellite instability, and loss of heterozygosity at chromosome 18q. Dis Colon Rectum 2004;47(9):1467–1482.PubMedCrossRefGoogle Scholar
  33. 33.
    Amatori F, Di Paolo A, Del Tacca M, et al. Thymidylate synthase, dihydropyrimidine dehydrogenase and thymidine phosphorylase expression in colorectal cancer and normal mucosa in patients. Pharmacogenet Genomics 2006;16(11):809–816.PubMedGoogle Scholar
  34. 34.
    Shirota Y, Stoehlmacher J, Brabender J, et al. ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol 2001;19(23):4298–4304.PubMedGoogle Scholar
  35. 35.
    Smorenburg CH, Peters GJ, van Groeningen CJ, et al. Phase II study of tailored chemotherapy for advanced colorectal cancer with either 5-fluorouracil and leucovorin or oxaliplatin and irinotecan based on the expression of thymidylate synthase and dihydropyrimidine dehydrogenase. Ann Oncol 2006;17(1):35–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Edler D, Glimelius B, Hallstrom M, et al. Thymidylate synthase expression in colorectal cancer: a prognostic and predictive marker of benefit from adjuvant fluorouracil-based chemotherapy. J Clin Oncol 2002;20(7):1721–1728.PubMedCrossRefGoogle Scholar
  37. 37.
    Kornmann M, Schwabe W, Sander S, et al. Thymidylate synthase and dihydropyrimidine dehydrogenase mRNA expression levels: predictors for survival in colorectal cancer patients receiving adjuvant 5-fluorouracil. Clin Cancer Res 2003;9(11):4116–4124.PubMedGoogle Scholar
  38. 38.
    Ciaparrone M, Quirino M, Schinzari G, et al. Predictive role of thymidylate synthase, dihydropyrimidine dehydrogenase and thymidine phosphorylase expression in colorectal cancer patients receiving adjuvant 5-fluorouracil. Oncology 2006;70(5):366–377.PubMedCrossRefGoogle Scholar
  39. 39.
    Popat S, Chen Z, Zhao D, et al. A prospective, blinded analysis of thymidylate synthase and p53 expression as prognostic markers in the adjuvant treatment of colorectal cancer. Ann Oncol 2006;17(12):1810–1817.PubMedCrossRefGoogle Scholar
  40. 40.
    Duffy MJ, van Dalen A, Haglund C, et al. Tumour markers in colorectal cancer: European Group on Tumour Markers (EGTM) guidelines for clinical use. Eur J Cancer 2007;43(9):1348–1360.PubMedCrossRefGoogle Scholar
  41. 41.
    Salonga D, Danenberg KD, Johnson M, et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 2000;6(4):1322–1327.PubMedGoogle Scholar
  42. 42.
    Metzger R, Danenberg K, Leichman CG, et al. High basal level gene expression of thymidine phosphorylase (platelet-derived endothelial cell growth factor) in colorectal tumors is associated with nonresponse to 5-fluorouracil. Clin Cancer Res 1998;4(10):2371–2376.PubMedGoogle Scholar
  43. 43.•
    Meropol NJ, Gold PJ, Diasio RB, et al. Thymidine phosphorylase expression is associated with response to capecitabine plus irinotecan in patients with metastatic colorectal cancer. J Clin Oncol 2006;24(25):4069–4077.PubMedCrossRefGoogle Scholar
  44. 44.
    Ogata Y, Sasatomi T, Mori S, et al. Significance of thymidine phosphorylase in metronomic chemotherapy using CPT-11 and doxifluridine for advanced colorectal carcinoma. Anticancer Res 2007;27(4C):2605–2611.PubMedGoogle Scholar
  45. 45.
    Jakob C, Liersch T, Meyer W, et al. Prognostic value of histologic tumor regression, thymidylate synthase, thymidine phosphorylase, and dihydropyrimidine dehydrogenase in rectal cancer UICC Stage II/III after neoadjuvant chemoradiotherapy. Am J Surg Pathol 2006;30(9):1169–1174.PubMedGoogle Scholar
  46. 46.
    Allard WJ, Matera J, Miller MC, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 2004;10(20):6897–6904.PubMedCrossRefGoogle Scholar
  47. 47.
    Cohen SJ, Alpaugh RK, Gross S, et al. Isolation and characterization of circulating tumor cells in patients with metastatic colorectal cancer. Clin Colorectal Cancer 2006;6(2):125–132.PubMedGoogle Scholar
  48. 48.••
    Meropol NJ, Cohen SJ, Iannotti N, et al.: Circulating tumor cells (CTC) predict progression free (PFS) and overall survival (OS) in patients with metastatic colorectal cancer. J Clin Oncol, 2007 ASCO Annual Meeting Proceedings Part I Vol 25, No 18S (June 20 Supplement), 2007:4010.Google Scholar
  49. 49.
    Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004;351(8):781–791.PubMedCrossRefGoogle Scholar
  50. 50.
    Sadahiro S, Suzuki T, Maeda Y, et al. Detection of carcinoembryonic antigen messenger RNA-expressing cells in peripheral blood 7 days after curative surgery is a novel prognostic factor in colorectal cancer. Ann Surg Oncol 2007;14(3):1092–1098.PubMedCrossRefGoogle Scholar
  51. 51.
    Wang JY, Lin SR, Wu DC, et al. Multiple molecular markers as predictors of colorectal cancer in patients with normal perioperative serum carcinoembryonic antigen levels. Clin Cancer Res 2007;13(8):2406–2413.PubMedCrossRefGoogle Scholar
  52. 52.
    Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004;351(27):2817–2826.PubMedCrossRefGoogle Scholar
  53. 53.
    Wang Y, Jatkoe T, Zhang Y, et al. Gene expression profiles and molecular markers to predict recurrence of Dukes’ B colon cancer. J Clin Oncol 2004;22(9):1564–1571.PubMedCrossRefGoogle Scholar
  54. 54.••
    Barrier A, Boelle PY, Roser F, et al. Stage II colon cancer prognosis prediction by tumor gene expression profiling. J Clin Oncol 2006;24(29):4685–4691.PubMedCrossRefGoogle Scholar
  55. 55.
    Barrier A, Roser F, Boelle PY, et al. Prognosis of stage II colon cancer by non-neoplastic mucosa gene expression profiling. Oncogene 2007;26(18):2642–2648.PubMedCrossRefGoogle Scholar
  56. 56.
    Johnston PG, Mulligan K, Kay E, et al.: A genetic signature of relapse in stage II colorectal cancer derived from formalin fixed paraffin embedded tissue (FFPE) tissue using a unique disease specific colorectal array. J Clin Oncol, 2006 ASCO Annual Meeting Proceedings Part I Vol 24, No 18S (June 20 Supplement), 2006:3519.Google Scholar
  57. 57.
    Mariadason JM, Arango D, Shi Q, et al. Gene expression profiling-based prediction of response of colon carcinoma cells to 5-fluorouracil and camptothecin. Cancer Res. 2003;63(24):8791–8812.PubMedGoogle Scholar
  58. 58.
    Arango D, Wilson AJ, Shi Q, et al. Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells. Br J Cancer 2004;91(11):1931–1946.PubMedCrossRefGoogle Scholar
  59. 59.
    Matsuyama R, Togo S, Shimizu D, et al. Predicting 5-fluorouracil chemosensitivity of liver metastases from colorectal cancer using primary tumor specimens: three-gene expression model predicts clinical response. Int J Cancer 2006;119(2):406–413.PubMedCrossRefGoogle Scholar
  60. 60.
    Del Rio M, Molina F, Bascoul-Mollevi C, et al. Gene expression signature in advanced colorectal cancer patients select drugs and response for the use of leucovorin, fluorouracil, and irinotecan. J Clin Oncol 2007;25(7):773–780.PubMedCrossRefGoogle Scholar
  61. 61.
    Watanabe T, Komuro Y, Kiyomatsu T, et al. Prediction of sensitivity of rectal cancer cells in response to preoperative radiotherapy by DNA microarray analysis of gene expression profiles. Cancer Res 2006;66(7):3370–3374.PubMedCrossRefGoogle Scholar
  62. 62.
    Ghadimi BM, Grade M, Difilippantonio MJ, et al. Effectiveness of gene expression profiling for response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. J Clin Oncol 2005;23(9):1826–1838.PubMedCrossRefGoogle Scholar
  63. 63.
    Ruzzo A, Graziano F, Loupakis F, et al. Pharmacogenetic profiling in patients with advanced colorectal cancer treated with first-line FOLFOX-4 chemotherapy. J Clin Oncol 2007;25(10):1247–1254.PubMedCrossRefGoogle Scholar
  64. 64.
    Viguier J, Boige V, Miquel C, et al. ERCC1 codon 118 polymorphism is a predictive factor for the tumor response to oxaliplatin/5-fluorouracil combination chemotherapy in patients with advanced colorectal cancer. Clin Cancer Res 2005;11(17):6212–6217.PubMedCrossRefGoogle Scholar
  65. 65.
    Chung KY, Shia J, Kemeny NE, et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 2005;23(9):1803–1810.PubMedCrossRefGoogle Scholar
  66. 66.
    Saltz LB, Meropol NJ, Loehrer PJ, Sr, Needle MN, Kopit J, Mayer RJ. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 2004;22(7):1201–1208.PubMedCrossRefGoogle Scholar
  67. 67.
    Hecht JR, Patnaik A, Berlin J, et al. Panitumumab monotherapy in patients with previously treated metastatic colorectal cancer. Cancer 2007;110(5):980–988.PubMedCrossRefGoogle Scholar
  68. 68.
    Van Cutsem E, Humblet Y, Gelderblom H, et al.: Cetuximab dose-escalation study in patients with metastatic colorectal cancer (mCRC) with no or slight skin reactions on cetuximab standard dose treatment (EVEREST): pharmacokinetic and efficacy data of a randomized study. Proc 2007 Gastrointestinal Cancers Symposium, abst 237.Google Scholar
  69. 69.
    Vallbohmer D, Zhang W, Gordon M, et al. Molecular determinants of cetuximab efficacy. J Clin Oncol 2005;23(15):3536–3544.PubMedCrossRefGoogle Scholar
  70. 70.
    Zhang W, Gordon M, Schultheis AM, et al. FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol 2007;25(24):3712–3718.PubMedCrossRefGoogle Scholar
  71. 71.
    Moroni M, Veronese S, Benvenuti S, et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol 2005;6(5):279–286.PubMedCrossRefGoogle Scholar
  72. 72.••
    Khambata-Ford S, Garrett CR, Meropol NJ, et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol 2007;25(22):3230–3237.PubMedCrossRefGoogle Scholar
  73. 73.
    Lenz HJ, Van Cutsem E, Khambata-Ford S, et al. Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines. J Clin Oncol 2006;24(30):4914–4921.PubMedCrossRefGoogle Scholar
  74. 74.
    Lievre A, Bachet JB, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res 2006;66(8):3992–3995.PubMedCrossRefGoogle Scholar
  75. 75.
    Van Cutsem E, Peeters M, Siena S, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 2007;25(13):1658–1664.PubMedCrossRefGoogle Scholar
  76. 76.••
    Amado RG, Wolf M, Freeman D, et al.: Analysis of KRAS mutations in patients with metastatic colorectal cancer receiving panitumumab monotherapy. Euro J Cancer 2007, 5(6S):8.Google Scholar
  77. 77.
    Ferrone CR, Finkelstein DM, Thayer SP, Muzikansky A, Fernandez-delCastillo C, Warshaw AL. Perioperative CA19-9 levels can predict stage and survival in patients with resectable pancreatic adenocarcinoma. J Clin Oncol 2006;24(18):2897–2902.PubMedCrossRefGoogle Scholar
  78. 78.
    Berger AC, Winter K, Hoffman J, et al.: Post-resection CA 19-9 predicts overall survival (OS) in patients treated with adjuvant chemoradiation: a secondary endpoint of RTOG 9704. J Clin Oncol, 2007 ASCO Annual Meeting Proceedings Part I Vol 25, No 18S (June 20 Supplement), 2007:4522.Google Scholar
  79. 79.
    Ko AH, Hwang J, Venook AP, Abbruzzese JL, Bergsland EK, Tempero MA. Serum CA19-9 response as a surrogate for clinical outcome in patients receiving fixed-dose rate gemcitabine for advanced pancreatic cancer. Br J Cancer 2005;93(2):195–199.PubMedCrossRefGoogle Scholar
  80. 80.
    Nakano Y, Tanno S, Koizumi K, et al. Gemcitabine chemoresistance and molecular markers associated with gemcitabine transport and metabolism in human pancreatic cancer cells. Br J Cancer 2007;96(3):457–463.PubMedCrossRefGoogle Scholar
  81. 81.
    Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemcitabine. Oncogene 2004;23(8):1539–1548.PubMedCrossRefGoogle Scholar
  82. 82.
    Nakahira S, Nakamori S, Tsujie M, et al. Involvement of ribonucleotide reductase M1 subunit overexpression in gemcitabine resistance of human pancreatic cancer. Int J Cancer 2007;120(6):1355–1363.PubMedCrossRefGoogle Scholar
  83. 83.
    Spratlin J, Sangha R, Glubrecht D, et al. The absence of human equilibrative nucleoside transporter 1 is associated with reduced survival in patients with gemcitabine-treated pancreas adenocarcinoma. Clin Cancer Res 2004;10(20):6956–6961.PubMedCrossRefGoogle Scholar
  84. 84.
    Giovannetti E, Del Tacca M, Mey V, et al. Transcription analysis of human equilibrative nucleoside transporter-1 predicts survival in pancreas cancer patients treated with gemcitabine. Cancer Res 2006;66(7):3928–3935.PubMedCrossRefGoogle Scholar
  85. 85.
    Sun W, Lipsitz S, Catalano P, Mailliard JA, Haller DG. Phase II/III study of doxorubicin with fluorouracil compared with streptozocin with fluorouracil or dacarbazine in the treatment of advanced carcinoid tumors: Eastern Cooperative Oncology Group Study E1281. J Clin Oncol 2005;23(22):4897–4904.PubMedCrossRefGoogle Scholar
  86. 86.
    Ekeblad S, Sundin A, Janson ET, et al. Temozolomide as monotherapy is effective in treatment of advanced malignant neuroendocrine tumors. Clin Cancer Res 2007;13(10):2986–2991.PubMedCrossRefGoogle Scholar
  87. 87.
    Kulke MH, Stuart K, Enzinger PC, et al. Phase II study of temozolomide and thalidomide in patients with metastatic neuroendocrine tumors. J Clin Oncol 2006;24(3):401–406.PubMedCrossRefGoogle Scholar
  88. 88.
    Kulke MH, Frauenhoffer CS, Hooshmand SM, et al.: Prediction of response to temozolomide (TMZ)-based therapy by loss of MGMT expression in patients with advanced neuroendocrine tumors (NET). J Clin Oncol, 2007 ASCO Annual Meeting Proceedings Part I Vol 25, No 18S (June 20 Supplement), 2007:4505.Google Scholar

Copyright information

© Current Science Inc. 2008

Authors and Affiliations

  1. 1.Department of Medical OncologyFox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations