Current Treatment Options in Oncology

, Volume 7, Issue 3, pp 246–257 | Cite as

Novel treatment approaches for patients with relapsed and refractory multiple myeloma

  • Rajni Sinha
  • Sagar Lonial
Article

Opinion statement

Treatment options for patients with relapsed myeloma are a rapidly moving entity. Although autologous transplantation has improved outcomes for younger patients, the use of a second autologous transplant in the relapsed setting has less benefit. Nonmyeloablative allogeneic transplant is being studied in several large cooperative group trials, but to date early auto/mini-allo does not appear to be superior to tandem autologous transplantation. The greatest benefit in the relapsed setting has been demonstrated using novel targeted agents with biologically based therapies. The response rates from thalidomide with and without dexamethasone, bortezomib, and lenalidomide with and without dexamethasone clearly demonstrate high levels of activity with encouraging durations of remission. More recent studies are combining novel agents, and small phase I/II trials are demonstrating higher overall response and complete remission rates. The next generation of novel agents targeting heat shock proteins, the mitogen-activated protein kinase pathway, and monoclonal antibodies are further expanding the list of future potential agents. The rapid clinical development of targeting agents will give us more options to treat patients with relapsed or refractory myeloma, thereby improving quality of life and overall survival.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Mehta J, Tricot G, Jagannath S, et al.: Salvage autologous or allogeneic transplantation for multiple myeloma refractory to or relapsing after a first-line autograft. Bone Marrow Transplant 1998, 21: 887–892.PubMedCrossRefGoogle Scholar
  2. 2.
    Lee CK, Barlogie B, Zangari M, et al.: Transplantation as salvage therapy for high-risk patients with myeloma in relapse. Bone Marrow Transplant 2002, 30:873–878.PubMedCrossRefGoogle Scholar
  3. 3.
    Kroger N, Schwerdtfeger R, Kiehl M, et al.: Autologous stem cell transplantation followed by a dose-reduced allograft induces high complete remission rate in multiple myeloma. Blood 2002, 100: 755–760. This study is a clinical trial evaluating toxicity, engraftment, chimerism, graft-versus-host disease, and response to a dose-reduced allograft after cytoreductive autografting in 17 patients with advanced multiple myeloma. This tandem auto-allotrans-plant protocol was highly active and provided rapid engraft-ment, with complete donor chimerism and tandem toxicity.PubMedCrossRefGoogle Scholar
  4. 4.
    Maloney DG, Molina AJ, Sahebi F, et al.: Allografting with nonmyeloablative conditioning following cyto-reductive autografts for the treatment of patients with multiple myeloma. Blood 2003, 102: 3447–3454.PubMedCrossRefGoogle Scholar
  5. 5.
    Moreau P, Garban F, Facon T, et al.: Preliminary results of the IFM9903 and IFM9904 protocols comparing autologous followed by miniallogeneic transplanta-tion and double autologous transplant in high-risk de novo multiple myeloma. Blood 2003, 102:138a.Google Scholar
  6. 6.
    Rosinol L, Lahuerta J, Sureda A: Feasibility and efficacy of a planned second transplantation (‘auto’ or ‘mino-allo’) intensification in patients with multiple myeloma not achieving complete remission (CR) of near CR with a first autologous transplant: results from the Spanish Pethema/GEM study. Haematologica 2005, 90:50.Google Scholar
  7. 7.
    LENZ. Thalidomide and congenital abnormalities. Lancet 1962, 1:45.Google Scholar
  8. 8.
    Moreira A, Sampaio E, Zmuidzinas A, et al.: Thalido-mide exerts its inhibitory action on tumor necrosis factor-alpha by enhancing mRNA degradation. J Exp Med 1993, 177:1675–1680.PubMedCrossRefGoogle Scholar
  9. 9.
    Sampaio E, En S, Galilly R, et al.: Thalidomide selec-tively inhibits tumor necrosis factor A production by stimulated human monocytes. J Exp Med 1991, 173:699–703.PubMedCrossRefGoogle Scholar
  10. 10.
    D'Amato RJ, Loughnan MS, Flynn E, Folkman J: Thali-domide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A 1994, 91: 4082–4085.PubMedCrossRefGoogle Scholar
  11. 11.
    Kenyon BM, Browne F, D'Amato RJ: Effects of thalido-mide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res 1997, 67:971–978.CrossRefGoogle Scholar
  12. 12.
    Singhal S, Mehta J, Desikan R, et al.: Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999, 341:1565–1571.PubMedCrossRefGoogle Scholar
  13. 13.
    Barlogie B, Desikan R, Eddlemon P, et al.: Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prog-nostic factors in a phase 2 study of 169 patients. Blood 2001, 98:492–494.PubMedCrossRefGoogle Scholar
  14. 14.
    Alexanian R, Webes D: Thalidomide for resistant and relapsing myeloma. Semin Hematol 2000, 37:22–25.CrossRefGoogle Scholar
  15. 15.
    Rajkumar SV, Fonseca R, Dispenzieri A, et al.: Thalido-mide in the treatment of relapsed multiple myeloma. Mayo Clin Proc 2000, 75:897–901.PubMedCrossRefGoogle Scholar
  16. 16.
    Hus M, Dmoszynska A, Soroka-Wojtaszko M, et al.: Thalidomide treatment of resistant or relapsed multiple myeloma patients. Haematologica 2001, 86:404–408.PubMedGoogle Scholar
  17. 17.
    Tosi P, Cavo M: Thalidomide in multiple myeloma: state of art. Haematologica 2002, 87:233–234.PubMedGoogle Scholar
  18. 18.
    Dimopoulos MA, Zervas K, Kouvatseas G, et al.: Thali-domide and dexamethasone combination for refrac-tory multiple myeloma. Ann Oncol 2001, 12:991–995.PubMedCrossRefGoogle Scholar
  19. 19.
    Weber D, Rankin K, Gavino M, et al.: Thalidomide alone or with dexamethasone for previously untreated multi-ple myeloma. J Clin Oncol 2003, 21: 16–19.PubMedCrossRefGoogle Scholar
  20. 20.
    Anagnostopoulos A, Weber D, Rankin K, et al.: Thalido-mide and dexamethasone for resistant multiple myeloma. Br J Haematol 2003, 121:768–771.PubMedCrossRefGoogle Scholar
  21. 21.
    Garcia-Sanz R, Gonzalez-Fraile MI, et al.: The combina-tion of thalidomide, cyclophosphamide and dexam-ethasone (ThaCyDex) is feasible and can be an option for relapsed/refractory multiple myeloma. Hematol J 2002, 3:43–48.PubMedCrossRefGoogle Scholar
  22. 22.
    Dimopoulos MA, Hamilos G, Zomas A, et al.: Pulsed cyclophosphamide, thalidomide and dexamethasone: an oral regimen for previously treated patients with multiple myeloma. Hematol J 2004, 5:112–117.PubMedCrossRefGoogle Scholar
  23. 23.
    Lee CK, Barlogie B, Munshi N, et al.: DTPACE: an effec-tive, novel combination chemotherapy with thalido-mide for previously treated patients with myeloma. J Clin Oncol 2003, 21: 2732–2739.PubMedCrossRefGoogle Scholar
  24. 24.
    Palumbo A, Bertola A, Musto P, et al.: Oral melphalan, prednisone, and thalidomide for newly diagnosed patients with myeloma. Cancer 2005, 104: 1428–1433.PubMedCrossRefGoogle Scholar
  25. 25.
    Richardson P, Schlossman R, Hideshima T, et al.: A phase 1 study of oral CC5013, an immunomodulatory thali-domide (Thal) derivative, in patients with relapsed and refractory multiple myeloma (MM) [775a]. American Society of Hematology 43rd Annual Meeting. Orlando, Florida, December 7–11, 2001.Google Scholar
  26. 26.
    Richardson P, Jagannath S, Schlossman R, et al.: A multi-center, randomized, phase 2 study to evaluate the effi-cacy and safety of 2 CC-5013 dose regimens when used alone or in combination with dexamethasone (Dex) for the treatment of relapsed or refractory multiple myeloma (MM) [235a]. 45th American Society of Hematol-ogy Meeting. San Diego, CA, December 6–9, 2003. This ongoing study is a large randomized phase II trial inves-tigating lenalidomide or dexamethasone in patients with relapsed multiple myeloma. The interim analysis is in favor of lenalidomide.Google Scholar
  27. 27.
    Richardson P, Jagganath S, Hussein MA, et al.: A multi-center, single arm, open label study to evaluate the safety and efficacy of single agent lenalidomide in subjects with relapsed and refractory multiple myeloma. 10th International Myeloma Workshop. Sydney, Australia, April 10–14, 2005.Google Scholar
  28. 28.
    Weber D: Lenalidomide (CC-5013, Revlimid) and other IMIDS. 10th International Myeloma Workshop. Sydney, Australia, April 10–14, 2005.Google Scholar
  29. 29.
    Dimopoulos M, Spencer A, Attal M, et al.: Study of lena-lidomide plus dexamethasone versus dexamethasone alone in relapsed or refractory multiple myeloma (MM): results of a phase 3 study (MM-010) [abstract 6]. Annual Meeting of the American Society of Hematology. Atlanta, GA, December 10–13, 2005.Google Scholar
  30. 30.
    Gerecke C, Knop S, Topp M, et al.: A multicenter phase I/II trial evaluating the safety and efficacy of lenalido-mide (Revlimida (R), CC-5013) in combination with doxorubicin and dexamethasone (RAD) in patients with relapsed and refractory multiple myeloma. Blood 2005, 106: 5136a.Google Scholar
  31. 31.
    Baz R, Choueiri T, Jawde R, et al.: Doxil (D), vincristine (V), reduced frequency dexamethasone (D) and rev-limid (R) (DVd-R). Results in a high response rate in patients with refractory multiple myeloma (RMM). Blood 2005, 106: 2559.CrossRefGoogle Scholar
  32. 32.
    Adams J: The proteasome: a suitable antineoplastic target. Nat Rev Cancer 2004, 4:349–360.PubMedCrossRefGoogle Scholar
  33. 33.
    Hideshima T, Richardson P, Chauhan D, et al.: The protea-some inhibitor PS-341 inhibits growth, induces apopto-sis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001, 61: 3071–3076.PubMedGoogle Scholar
  34. 34.
    Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH: Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci U S A 2003, 100: 9946–9951.PubMedCrossRefGoogle Scholar
  35. 35.
    Hideshima T, Mitsiades C, Akiyama M, et al.: Molecular mechanisms mediating antimyeloma activity of pro-teasome inhibitor PS-341. Blood 2003, 101: 1530–1534. This preclinical study demonstrates several mechanisms whereby bortezomib is able to induce myeloma cell death.PubMedCrossRefGoogle Scholar
  36. 36.
    Orlowski RZ, Stinchcombe TE, Mitchell BS, et al.: Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 2002, 20:4420–4427.PubMedCrossRefGoogle Scholar
  37. 37.
    Richardson PG, Barlogie B, Berenson J, et al.: A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003, 348:2609–2617.PubMedCrossRefGoogle Scholar
  38. 38.
    Richardson PG, Sonneveld P, Schuster MW, et al.: Borte-zomib or high-dose dexamethasone for relapsed multi-ple myeloma. N Engl J Med 2005, 352:2487–2498. This is the first landmark phase II trial demonstrating the superiority of bortezomib over high-dose dexamethasone in treating relapsed/refractory myeloma.PubMedCrossRefGoogle Scholar
  39. 39.
    Terpos E, Kastritis E: The combination of bortezomib, melphalan, dexamethasone and intermittent thalido-mide (VMDT) is an effective treatment for relapsed/refractory myeloma: results of a phase II clinical trial. Annual Meeting of the American Society of Hematology. Atlanta, GA, December 10–13, 2005.Google Scholar
  40. 40.
    Issacs J, Xu W, Neckers L: Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 2003, 3:213–217.CrossRefGoogle Scholar
  41. 41.
    Mitsiades C, Mitsiades N, McMullan C, et al.: Anti-myeloma activity of heat shock protein-90 inhibition. Blood 2005, 107: 1092–1100.PubMedCrossRefGoogle Scholar
  42. 42.
    Richardson P, Chanan-Khan A, Alsina M, et al.: Safety and activity of KOS-953 in patients with relapsed and refractory multiple myeloma: interim results of a phase I trial. Annual Meeting of the American Society of Hematology. Atlanta, GA, December 10–13, 2005.Google Scholar
  43. 43.
    Chanan-Khan A, Richardson P, Alsina M, et al.: Phase I clinical trial of KOS-953 and bortezomib (BZ) in relapsed refractory multiple myeloma (MM) [abstract 362]. Annual Meeting of the American Society of Hematology. Atlanta, GA, December 10–13, 2005.Google Scholar
  44. 44.
    Chauhan D, Uchiyama H, Urashima M, et al.: Regulation of interleukin 6 in multiple myeloma and bone marrow stromal cells. Stem Cells 1995, 13(Suppl 2):35–39.PubMedGoogle Scholar
  45. 45.
    Urashima M, Chauhan D, Uchiyama H, et al.: CD40 ligand triggered interleukin-6 secretion in multiple myeloma. Blood 1995, 85:1903–1912.PubMedGoogle Scholar
  46. 46.
    Tai YT, Catley LP, Mitsiades CS, et al.: Mechanisms by which SGN-40, a humanized anti-CD40 antibody, induces cytotoxicity in human multiple myeloma cells: clinical implications. Cancer Res 2004, 64:2846–2852.PubMedCrossRefGoogle Scholar
  47. 47.
    Hussein MA, Berenson J, Niesvizky R, et al.: A phase I humanized anti-CD-40 monoclonal antibody (SGN-40) in patients with multiple myeloma. Blood 2005, 106: 2572.CrossRefGoogle Scholar
  48. 48.
    Hideshima T, Podar K, Chauhan D, et al.: p38 MAPK inhibition enhances PS-341 (bortezomib)-induced cytotoxicity against multiple myeloma cells. Oncogene 2004, 23:8766–8776.PubMedCrossRefGoogle Scholar
  49. 49.
    Amit-Vazina M, Shishodia S, Harris D, et al.: Atiprimod blocks STAT3 phosphorylation and induces apoptosis in multiple myeloma cells. Br J Cancer 2005, 93:70–80.PubMedCrossRefGoogle Scholar
  50. 50.
    Hamasaki M, Hideshima T, Tassone P, et al.: Azaspirane (N-N-diethyl-8,8-dipropyl-2-azaspiro [4.5] decane-2-propanamine) inhibits human multiple myeloma cell growth in the bone marrow milieu in vitro and in vivo. Blood 2005, 105: 4470–4476PubMedCrossRefGoogle Scholar
  51. 51.
    Wang M, Talpaz M, Jagannath S, et al.: A phase I, multi-center, dose escalation study of atiprimod in patients with refractory or relapsed multiple myeloma. Annual Meeting of the American Society of Hematology. Atlanta, GA, December 10–15, 2005.Google Scholar
  52. 52.
    Patel V, Lahusen T, Edward T, et al.: Perifosine, a novel alkylphospholipid, induces p21 waf1 expression in squa-mous carcinoma cell through a p53-independent path-way, leading to loss in cyclin-dependent kinase activity and cell cycle arrest. Cancer Res 2002, 62:1401–1409.PubMedGoogle Scholar
  53. 53.
    Hilgard P, Klenner T, Nossner B, et al.: D-21266, a new hetrocyclic alkylphospholipid with antitumor activity. Eur J Cancer 1997, 33:442–446.PubMedCrossRefGoogle Scholar
  54. 54.
    Kondapaka S, Singh S, Dasmahapatra G, et al.: Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2003, 2:1093–1103.PubMedGoogle Scholar
  55. 55.
    Sinha R, David E, Zeiler E, et al.: Combination of Akt/PKB inhibition (perifosine) and farnesyl transferase inhibition (tipifarnib) results in increased cell death in myeloma cell lines. Blood 2005, 106: 1568a.Google Scholar
  56. 56.
    David E, Sinha R, Torre C, et al.: Combination of farnesyl transferase inhibitor (tipifarnib) with perifosine induces apoptosis through phos-PDK1 in human lymphoma and leukemia cell lines. Blood 2005, 106: 1488a.CrossRefGoogle Scholar
  57. 57.
    Hideshima T, Catley L, Yasui H, et al.: Perifosine, an oral bioactive novel alkyl-phospholipid, inhibits Akt and induces in vitro and vivo cytotoxicity in human multiple myeloma (MM) cells [abstract 250]. Annual Meeting of the American Society of Hematology. Atlanta, GA, December 10–13, 2005.Google Scholar
  58. 58.
    Richardson PG, Schlossman RL, Weller E, et al.: Immuno-modulatory CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 2002, 100: 3063–3067.PubMedCrossRefGoogle Scholar
  59. 59.
    Richardson PG, Schlossman RL, Munshi N, et al.: A phase I trial of lenalidomide (REVLIMID) with borte-zomib (VELCADE) in relapsed and refractory multiple myeloma. Annual Meeting of the American Society of Hematology. Atlanta, GA, December 10–15, 2005.Google Scholar
  60. 60.
    Berenson J, Yang H, Swift RA, et al.: Bortezomib in com-bination with melphalan in the treatment of relapsed or refractory multiple myeloma: a phase I/II study. Blood 2004, 104: 64a.Google Scholar
  61. 61.
    Zangari M, Barlogie B, Hollmig K, et al.: Marked activity of velcade plus thalidomide in advanced and refractory multiple myeloma. Blood 2004, 104:413a.Google Scholar
  62. 62.
    Berenson J, Yang H, Sadler K, et al.: Phase I/II trial assessing bortezomib and melphalan combination therapy for the treatment of patients with relapsed or refractory multiple myeloma. J Clin Oncol 2006, 24:937–944.PubMedCrossRefGoogle Scholar
  63. 63.
    Popat R, Oakervee HE, Foot N, et al.: A phase I/II study of bortezomib and low dose intravenous melphalan (BM) for relapsed multiple myeloma. Blood 2005, 106: 2555.Google Scholar
  64. 64.
    Berenson J, Matous J, Ferretti D, et al.: A phase I/II trial evaluating the combination of arsenic trioxide, borte-zomib and ascorbic acid for patients with relapsed or refractory multiple myeloma. Blood 2005, 106: 2565.Google Scholar
  65. 65.
    Chanan-Khan A, Richardson P, Alsina M, et al.: Phase 1 clinical trial of KOS-953 + bortezomib (BZ) in relapsed refractory multiple myeloma (MM). Annual Meeting of the American Society of Hematology. Atlanta, GA, December 10–13, 2005.Google Scholar

Copyright information

© Current Science Inc 2006

Authors and Affiliations

  • Rajni Sinha
  • Sagar Lonial
    • 1
  1. 1.Winship Cancer InstituteEmory UniversityAtlantaUSA

Personalised recommendations