Advertisement

Wuhan University Journal of Natural Sciences

, Volume 24, Issue 6, pp 461–466 | Cite as

Global Existence and Lp Decay Estimate of Solutions for Viscous Cahn-Hilliard Equation with Inertial Term

  • Hongmei XuEmail author
  • Yu Shi
Mathematics
  • 10 Downloads

Abstract

In this paper, Cauchy problem of viscous Cahn-Hil-liard equation with inertial term in multi-space dimension is considered. Based on the detailed analysis of Green function, using fixed point theorem, we get the global in-time existence of classical solution. Furthermore, we get Lp decay rate of the solution.

Key words

Cahn-Hilliard equation with inertial term global existence of classical solution Lp decay estimate fixed point theorem 

CLC number

O 175.28 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Caffarelli L A, Muler N E. An L -bound for solutions of the Cahn-Hilliard equation [J]. Arch Ration Mech Anal, 1995, 133(2): 129–144.CrossRefGoogle Scholar
  2. [2]
    Efendiev M, Miranville A, Zelik S. Exponential attractors for a singularly perturbed Cahn-Hilliard system [J]. Math Nachr, 2004, 272(1): 11–31.CrossRefGoogle Scholar
  3. [3]
    Elhott C M, Zheng S. On the Cahn-Hilliard equation [J]. Arch Ration Mech Anal, 1986, 96(4): 339–357.CrossRefGoogle Scholar
  4. [4]
    Novick-Cohen A. The Cahn-Hilliard equation mathematical and modeling perspectives [J]. Adv Math Sci Appl, 1998, 8: 965–985.Google Scholar
  5. [5]
    Novick-Cohen A. On Cahn-Hilliard type equations [J]. Nonlinear Anal, 1990, 15(9): 797–814.CrossRefGoogle Scholar
  6. [6]
    Galenko P. Phase-field model with relaxation of the diffusion flux in nonequilibrium solidification of a binary system [J]. Phys Lett A, 2001, 287(3–4): 190–197.CrossRefGoogle Scholar
  7. [7]
    Galenko P, Jou D. Diffuse-interface model for rapid phase transformations in nonequilibrium systems [J]. Phys Rev E, 2005, 71(4): 046125.CrossRefGoogle Scholar
  8. [8]
    Galenko P, Lebedev V. Analysis of the dispersion relation in spinodal decomposition of a binary system [J]. Philos Mag Lett, 2007, 87(11): 821–827.CrossRefGoogle Scholar
  9. [9]
    Galenko P, Lebedev V. Local nonequilibrium effect on spi-nodal decomposition in a binary system [J]. Int J Thermodyn, 2008, 11(1): 21–28.Google Scholar
  10. [10]
    Grasselli M, Schimperna G, Segatti A, et al. On the 3D Cahn-Hilliard equation with inertial term [J]. J Evol Equ, 2009, 9(2): 371–404.CrossRefGoogle Scholar
  11. [11]
    Grasselli M G, Zelik S. On the 2D Cahn-Hilliard equation with inertial term [J]. Commun Partial Diff Eqns, 2009, 34(2): 137–170.CrossRefGoogle Scholar
  12. [12]
    Wang W K, Wu Z G. Optimal decay rate of solutions for Cahn-Hilliard equation with inertial term in multi-dimensions [J]. J Math Anal Appl, 2012, 387(1): 349–358.CrossRefGoogle Scholar
  13. [13]
    Deng S J, Wang W K, Zhao H L. Existence theory and L estimates for the solution of nonlinear viscous wave equation [J]. Nonlinear Anulysis-real world Applications, 2010, 11(5): 4404–4414.CrossRefGoogle Scholar
  14. [14]
    Li T T, Chen Y M. The Nonlinear Evolution Euqation [M]. Beijing: Scientific Press, 1989 (Ch)Google Scholar
  15. [15]
    Wang W K, Wang W J. The pointwise estimates of solutions for semilinear dissipative wave equation in multi-dimension [J]. Jourral of Nathervatical Analysis and Applications, 2010, 366(1): 226–241.CrossRefGoogle Scholar

Copyright information

© Wuhan University and Springer-Verlag GmbH Germany 2019

Authors and Affiliations

  1. 1.College of ScienceHohai UniversityJiangsuChina

Personalised recommendations