Advertisement

Wuhan University Journal of Natural Sciences

, Volume 24, Issue 1, pp 8–14 | Cite as

Syntheses, Crystal Structures, and Fluorescence Properties of Two 2D→2D Coordination Polymers Based on the Flexible 4-Substituted Bis(1,2,4-triazole) Ligand

  • Yanfen PengEmail author
  • Tianbao Liu
  • Qiuyan Wu
Chemistry
  • 4 Downloads

Abstract

Two new 2D → 2D zinc(II) coordination polymers, [Zn(btre)0.5(nbdc)(H2O)]n (1) and {[Zn(btre)0.5(MeOip)(H2O)2]·H2O}n (2) (btre = 1,2-bis(1,2,4-triazol-4-yl)ethane, nbdc=3-nitro-1, 2-benzenedicarboxylate, MeOip=4-methoxybenzene-1, 3-dicarboxylate) were synthesized at room temperature condition and characterized by IR spectra, elemental analyses, single-crystal and powder X-ray diffractions. Three sets of equivalent 2D (6, 3) networks parallel polycatenated with each other to give a 2D → 2D network in 1 and 2. There are strong π-π interactions and hydrogen bonding interactions between adjacent parallel polycatenated 2D (6, 3) network in 1. Only hydrogen bonding interactions exist in 2. Thermal stabilities and luminescence of 1 and 2 were investigated.

Key words

3-fold interpenetration 1,2-bis(1,2,4-triazol-4-yl) ethane 2D (6, 3) network luminescence 

CLC number

O 614.24+1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Evans O R, Lin W B. Crystal engineering of NLO materials based on metal-organic coordination networks[J]. Acc Chem Res, 2002, 35(7): 511–522.CrossRefGoogle Scholar
  2. [2]
    Ockwig N W, Delgado-Friederichs O, O’Keeffe M, et al. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks[J]. Acc Chem Res, 2005, 38(3): 176–182.CrossRefGoogle Scholar
  3. [3]
    Carlucci L, Ciani G, Proserpio D M, et al. Entangled two-dimensional coordination networks: A general survey[J]. Chem Rev, 2014, 114(15): 7557–7580.CrossRefGoogle Scholar
  4. [4]
    Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chem Rev, 2012, 112(2): 869–932.CrossRefGoogle Scholar
  5. [5]
    Chen B L, Xiang S C, Qian G D. Metal-organic frameworks with functional pores for recognition of small molecules[J]. Acc Chem Res, 2010, 43(8): 1115–1124.CrossRefGoogle Scholar
  6. [6]
    Wu H, Yang J, Su Z M, et al. An exceptional 54-fold interpenetrated coordination polymer with 103-srs network topology[J]. J Am Chem Soc, 2011, 133(30): 11406–11409.CrossRefGoogle Scholar
  7. [7]
    Lin Z J, Lü J, Hong M C, et al. Metal-organic frameworks based on flexible ligands (FL-MOFs): Structures and applications[J]. Chem Soc Rev, 2014, 43: 5867–5895.CrossRefGoogle Scholar
  8. [8]
    Hoskins B F, Robson R, Slizys D A. An infinite 2D polyrotaxane network in Ag2(bix)3(NO3)2 (bix=1,4-Bis (imidazol-1-ylmethyl)benzene) [J]. J Am Chem Soc, 1997, 119(12): 2952–2953.CrossRefGoogle Scholar
  9. [9]
    Li B L, Peng Y F, Li B Z, et al. Supramolecular isomers in the same crystal: A new type of entanglement involving ribbons of rings and 2D (4,4) networks polycatenated in A 3D architecture [J]. Chem Commun, 2005, 18: 2333–2335.CrossRefGoogle Scholar
  10. [10]
    Carlucci L, Ciani G, Moret M, et al. Polymeric layers catenated by ribbons of rings in a three-dimensional self-assembled architecture: A nanoporous network with spongelike behavior [J]. Angew Chem Int Ed, 2000, 39(8): 1506–1510.CrossRefGoogle Scholar
  11. [11]
    Zhu X, Liu X G, Li B L, et al. Solvent-controlled assembly of supramolecular isomers: 2D (4,4) network,1D ribbons of ring and both 2D (4,4) networks and 1D ribbons polycatenated in a 3D array [J]. CrystEngComm, 2009, 11(6): 997–1000.CrossRefGoogle Scholar
  12. [12]
    Li T, Zhang Z J, Yu A, et al. A new type of entanglement involving ribbons of rings and two different kinds of 2D (4,4) networks (2D+2D+1D) polycatenated in a 3D supramolecular architecture [J]. Cryst Growth Des, 2010, 10(9): 3847–3849.CrossRefGoogle Scholar
  13. [13]
    Wang C Y, Wilseck Z M, LaDuca R L. 1D + 1D→1D polyrotaxane, 2D + 2D→3D interpenetrated, and 3D self-penetrated divalent metal terephthalate bis(pyridylformyl) piperazine coordination polymers [J]. Inorg Chem, 2011, 50: 8997–9003.CrossRefGoogle Scholar
  14. [14]
    Peng Y F, Zheng L Y, Han S S, et al. Two zinc coordination polymers showing five-fold interpenetrated diamondoid network and 2D→3D inclined polycatenation motif [J]. Inorg Chem Commun, 2014, 44: 41–45.CrossRefGoogle Scholar
  15. [15]
    Guo X M, Yan Y N, Guo H D, et al. Seven entangled coordination polymers assembled from triphenylamine-based bisimidazole and dicarboxylates: Interpenetration, selfpenetration and mixed entanglement [J]. CrystEngComm, 2016, 18: 2546–2558.CrossRefGoogle Scholar
  16. [16]
    Sun D, Han L L, Yuan S, et al. Four new Cd(II) coordination polymers with mixed multidentate. N-donors and biphenyl-based polycarboxylate ligands: Syntheses, structures, and photoluminescent properties[J]. Cryst Growth Des, 2013, 13: 377–385.CrossRefGoogle Scholar
  17. [17]
    Peng Y F, Liu T B, Wu Q Y. Syntheses, structures and luminescent properties of Cd(II)/Zn(II) coordination polymers based on the flexible 4-substituted bis(1,2,4-triazole) ligand [J]. Chinese J Struct Chem, 2017, 36(7): 1156–1163.Google Scholar
  18. [18]
    Peng Y F, Zhao S, Li K, et al. Construction of Cu(II), Zn(II) and Cd(II) metal-organic frameworks of bis(1,2,4-triazol-4-yl)ethane and benzenetricarboxylate: Syntheses, structures and photocatalytic properties [J]. CrystEngComm, 2015, 17: 2544–2552.CrossRefGoogle Scholar
  19. [19]
    Liang N, Wang J, Yuan D, et al. A novel three-dimensional network silver coordination polymer with flexible bis (1,2,4-triazol-4-yl)ethane [J]. Inorg Chem Commun, 2010, 13: 844–846.CrossRefGoogle Scholar
  20. [20]
    Peng Y F, Li K, Zhao S, et al. Tuning zinc coordination architectures by benzenedicarboxylate position isomers and bis(triazole) [J]. Spectrochim Acta A: Mol Biomol Spectrom, 2015, 147: 20–25.CrossRefGoogle Scholar
  21. [21]
    Li K, Blatov V A, Fan T, et al. A series of Cd(II) coordination polymers based on flexible bis(triazole) and multicarboxylate ligands: Topological diversity, entanglement and properties [J]. CrystEngComm, 2017, 19: 5797–5808.CrossRefGoogle Scholar
  22. [22]
    Han S S, Shi L L, Li K, et al. Syntheses, structures and luminescence of a series of coordination polymers constructed with 4-substituted 1,2,4-triazole and biscarboxylate coligands [J]. RSC Adv, 2015, 5: 107166–107178.CrossRefGoogle Scholar
  23. [23]
    Garcia Y, Bravic G, Gieck C, et al. Crystal structure, magnetic properties, and 57Fe Mössbauer Spectroscopy of the two-dimensional coordination polymers [M(1,2-bis(1,2,4-triazol-4-yl)ethane)2(NCS)2] (M(II) = Fe, Co) [J]. Inorg Chem, 2005, 44(26): 9723–9730.CrossRefGoogle Scholar
  24. [24]
    Sheldrick G M. A short history of SHELX [J]. Acta Crystallogr, 2008, A64: 112–122.CrossRefGoogle Scholar
  25. [25]
    Sheldrick G M. SHELXT-integrated space-group and crystal-structure determination [J]. Acta Crystallogr, 2015, A71: 3–8.Google Scholar
  26. [26]
    Batten S R, Robson R. ChemInform abstract: Interpenetrating nets: Ordered, periodic entanglement [J]. Angew Chem Int Ed, 1998, 37(11): 1460–1496.CrossRefGoogle Scholar
  27. [27]
    Habib H A, Hoffmann A, Hoppe H A, et al. Crystal structure solid-state cross polarization magic angle spinning 13C NMR correlation in luminescent d 10 metal-organic frameworks constructed with the 1,2-bis(1,2,4-triazol-4-yl)ethane ligand [J]. Inorg Chem, 2009, 48: 2166–2180.CrossRefGoogle Scholar
  28. [28]
    Habib H A, Sanchiz J, Janiak C. Magnetic and luminescence properties of Cu(II), Cu(II)4O4 core, and Cd(II) mixedligand metal–organic frameworks constructed from 1,2-bis (1,2,4-triazol-4-yl)ethane and benzene-1,3,5-tricarboxylate [J]. Inorg Chim Acta, 2009, 362: 2452–2460.CrossRefGoogle Scholar
  29. [29]
    Habib H A, Hoffmann A, Höppe H A, et al. Crystal structures and solid-state CPMAS 13C NMR correlations in luminescent zinc(II) and cadmium(II) mixed-ligand coordination polymers constructed from 1,2-bis(1,2,4-triazol-4-yl)ethane and benzenedicarboxylate[J]. Dalton Trans, 2009, 10: 1742–1751.CrossRefGoogle Scholar
  30. [30]
    Du P, Yang Y, Yang J, et al. A series of MOFs based on a tricarboxylic acid and various N-donor ligands: Syntheses, structures, and properties [J]. CrystEngComm, 2013, 15(35): 6986–7002.CrossRefGoogle Scholar

Copyright information

© Wuhan University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemical and Material EngineeringChizhou UniversityAnhuiChina

Personalised recommendations