Advertisement

ZDM

, Volume 29, Issue 3, pp 75–80 | Cite as

Fostering creativity through instruction rich in mathematical problem solving and problem posing

  • Edward A. Silver
Analyses

Abstract

Although creativity is often viewed as being associated with the notions of “genius” or exceptional ability, it can be productive for mathematics educators to view creativity instead as an orientation or disposition toward mathematical activity that can be fostered broadly in the general school population. In this article, it is argued that inquiry-oriented mathematics instruction which includes problem-solving and problem-posing tasks and activities can assist students to develop more creative approaches to mathematics. Through the use of such tasks and activities, teachers can increase their students’ capacity with respect to the core dimensions of creativity, namely, fluency, flexibility, and novelty. Because the instructional techniques discussed in this article have been used successfully with students all over the world, there is little reason to believe that creativity-enriched mathematics instruction cannot be used with a broad range of students in order to increase their representational and strategic fluency and flexibility, and their appreciation for novel problems, solution methods, or solutions.

ZDM-Classification

C40 D40 D50 

Kreativität fördern durch einen Unterricht, der reich ist an Situationen des mathematischen Problemlösens und Aufgabenerfindens

Kurzreferat

Kreativität wird oft im Zusammenhang gesehen mit Begriffen wie “Genie” oder außergewöhnliche Fähigkeiten. Demgegenüber kann es für Mathematiklehrer jedoch produktiver sein. Kreativität als Orientierung für mathematische Aktivitäten zu nehmen, die auf diese Weise bei der Allgemeinheit der Schüler breit gefördert werden kann. In diesem Beitrag wird gezeigt, daß forschender Mathematikunterricht, der Aufgaben zum Problemlösen und zum Aufgabenerfinden beinhaltet, Schüler dabei unterstützen kann, mehr kreative Zugänge zur Mathematik zu entwickeln. Durch solche Aktivitäten und Aufgaben kann der Lehrer die Fähigkeiten seiner Schüler im Hinblick auf die Kernaspekte von Kreativität erweitern, nämlich Gewandtheit, Flexibilität und Neues. Die hier diskutierten Unterrichtsmethoden wurden weltweit erfolgreich angewendet, so daß es keinen Grund gibt, daran zu zweifeln, daß, solch em kreativitätsfördernder Mathematikunterricht nicht auch bei einem großen Teil aller Schüler eingesetzt werden kann, um ihre Gewandtheit und Flexibilität im Hinblick auf Darstellung und Strategien sowie ihr Interesse an neuartigen Aufgaben, Lösungsmethoden oder Lösungen zu fördern.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balka, D. S. (1974): Creative ability in mathematics.—In: Arithmetic Teacher 21, p. 633–636.Google Scholar
  2. Brown, S. I., Walter, M. I. (1983): The art of problem posing.— Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  3. Getzels, J. W.; Csikszentmihalyi, M. (1976): The creative vision. —New York; WileyGoogle Scholar
  4. Getzels, J. W.; Jackson, P. W. (1962): Creativity and intelligence: Exploration with gifted children.—New York: WileyGoogle Scholar
  5. Ghiselin, B. (Ed.) (1952): The creative process.—New York: MentorGoogle Scholar
  6. Hadamard, J. (1945): The psychology of invention in the mathematical fied.—Princeton, NJ: Princeton University PressGoogle Scholar
  7. Hashimoto, Y. (1987). Classroom practice of problem solving in Japanese elementary schools.—In: J. Becker, T. Miwa (Eds.), Proceedings of the U.S.-Japan seminar on mathematical problem solving. Columbus, OH: ERIC/SMEAC Clearinghouse (ED 304 315), p. 94–119.Google Scholar
  8. Hashimoto, Y.; Sawada, T. (1984): Research on the mathematics teaching by developmental treatment of mathematical problems. —In: T. Kawaguchi (Ed.), Proceedings of the ICMI-JSME regional conference on mathematical education. Japan: Japan Society of Mathematical Education, p. 309–313.Google Scholar
  9. Healy, C. C. (1993): Creating miracles: A story of student discovery. —Berkeley, CA: Key Curriculum PressGoogle Scholar
  10. Helson, R. (1983): Creative mathematicians.—In: R. S. Albert (Ed.), Genius and eminence: The social psychology of creativity and exceptional achievement. Oxford Pergamon Press, p. 311–330Google Scholar
  11. Holyoak, K. J.; Thagard, P. (1995): Mental leaps: Analogy in creative thought.—Cambridge, MA: MIT PressGoogle Scholar
  12. Lesh, R. (1981). Applied mathematical problem solving.—In: Educ. Stud. in Math. 12, p. 235–264Google Scholar
  13. Mansfield, R. S.; Busse, T. V. (1981): The psychology of creativity and discovery: Scientists and their work.—Chicago Nelson HallGoogle Scholar
  14. Nohda, N. (1986): A study of “open-approach” method in school mathematics.—In: Tsukoba J. of Educ. Study in Math. 5, p. 119–131.Google Scholar
  15. Nohda, N. (1995): Teaching and evaluating using “open-ended problems” in the classroom.—In: ZDM, Zentralblatt für Didaktik der Mathematik 27 (No. 2), p. 57–61Google Scholar
  16. Pehkonen, E. (1995): Use of open-ended problems.—In: ZDM, Zentralblatt für Didaktik der Mathematik 27 (No. 2), p. 55–57Google Scholar
  17. Poincare, H. (1948): Mathematical creation.—In: Scientific American 169, p. 54–57Google Scholar
  18. Pollak, H. O. (1987): Cognitive science and mathematics education: A mathematician’s perspective.—In:A. H. Schoenfeld (Ed), Cognitive science and mathematics education. Hillsdale, NJ: Lawrence-Erlbaum Associates.Google Scholar
  19. Polya, G. (1954): Mathematics and plausible reasoning.—Princeton, NJ: Princeton University PressGoogle Scholar
  20. Rothenberg, A. (1979): The emerging goddess.—Chicago: University of Chicago PressGoogle Scholar
  21. Schoenfeld, A. H. (1985): Mathematical problem solving.—Orlando, FL: Academic PressGoogle Scholar
  22. Shimada, S. (Ed.) (1977): On lessons using open-ended problems in mathematics teachin.—Tokyo: MizuumishoboGoogle Scholar
  23. Silver, E. A. (1995): The nature and use of open problems in mathematics education: Mathematical and pedagogical perspectives. —In: ZDM, Zentralblatt für Didaktik der Mathematik 27 (No. 2), p. 67–72Google Scholar
  24. Silver, E. A. (1994): On mathematical problem posing.—In: For the learning of mathematics 14 (No. 1), p. 19–28.Google Scholar
  25. Silver, E. A.; Adams, V. M. (1987): Using open-ended problems. —In: Arith. Teacher 34 (No. 9), p. 34–35Google Scholar
  26. Silver, E. A.; Kilpatrick, J.; Schlesinger, B. (1990) Thinking through mathematic: Fostering inquiry and communication in mathematics classrooms.—New York: The College BoardGoogle Scholar
  27. Skinner, P. (1991). What’s your problem? Posing and solving mathematical problems, K-2.—Portsmouth, NH: HeinemannGoogle Scholar
  28. Stacey, K. (1995): The challenges of keeping open problem-solving open in school mathematics.—In: ZDM, Zentralblatt für Didaktik der Mathematik 27 (No. 2), p. 62–77Google Scholar
  29. Stanic, G. M. A.; Kilpatrick, J. (1988): Historical perspectives on problem solving in the mathematics curriculum.—In: R. I. Charles; E. A. Silver (Eds.), The teaching and assessing of mathematical problem solving. Reston, VA: NCTM, p. 1–22Google Scholar
  30. Sternberg, R. J. (Ed.) (1988): The nature of creativity: Contemporary psychological perspectives.—New York: Cambridge University PressGoogle Scholar
  31. Streefland, L. (1987): Free production of fraction monographs. —In: J. C. Bergeron; N. Herscovics; C. Kieran (Eds.): Proceedings of the Eleventh Annual Meeting of the International Group for the Psychology of Mathematics Education, Volume I.—Montreal: Canada, p. 405–410Google Scholar
  32. Sweller, J.; Mawer, R. F.; Ward, M. R. (1983): Development of expertise in mathematical problem solving.—In: J. of Experimental Psych. 112, p. 639–661.Google Scholar
  33. Torrance, E. P. (1966): The Torrance tests of creative thinking: Technical-norms manual.—Princeton, NJ: Personnel PressGoogle Scholar
  34. Torrance, E. P. (1974): The Torrance tests of creative thinking: Technical-norms manual.—Bensenville, IL: Scholastic Testing ServicesGoogle Scholar
  35. Torrance, E. P. (1988): The nature of creativity as manifest in its testing.—In: R. J. Sternberg (Ed.). The nature of creativity: Contemporary psychological perspectives.—New York: Cambridge University Press, p. 43–75.Google Scholar
  36. Van den Brink, J. F. (1987): Children as arithmetic book authors —In: For the learning of mathematics 7 (No. 2), p. 44–48.Google Scholar
  37. Weisberg, R. W. (1988): Problem solving and creativity.—In R. J. Sternberg (Ed.), The nature of creativity. New York: Cambridge University Press, p. 148–176.Google Scholar
  38. Yerushalmy, M.; Chazan, D.; Gordon, M. (1993): Posing problems. One aspect of bringing inquiry into classrooms.—In: J. Schwartz, M. Yerushalmy, B. Wilson (Eds.), The Geometric Supposer: What is it a case of? Hillsdale, NJ: Lawrence Erlbaum Associates, p. 117–142.Google Scholar

Copyright information

© ZDM 1997

Authors and Affiliations

  • Edward A. Silver
    • 1
  1. 1.University of PittsburghPittsburghUSA

Personalised recommendations