Advertisement

ZDM

, Volume 29, Issue 3, pp 63–67 | Cite as

The state-of-art in mathematical creativity

  • Erkki Pehkonen
Analyses Introduction

Abstract

Creativity is a topic which is often neglected within mathematics teaching. Usually teachers think that it is logic that is needed in mathematics in the first place, and that creativity is not important and learning mathematics. On the other hand, if we consider a mathematician who develops new results in mathematics. we cannot overlook his/her use of the creative potential. Thus, the main questions are as follows: What methods could be used to foster mathematical creativity within school situations? What scientific knowledge, i.e. research results, do we have on the meaning of mathematical creativity?

ZDM-Classification

C40 C80 

Einführung: Mathematische Kreativität—eine Übersicht

Kurzreferat

Kreativität wird im Mathematikunterrich häufig vernachlässigt. Lehrer sind in der Regel der Ansicht, daß an erster Stelle in der Mathematik Logik gebraucht würde, und daß Kreativität beim Mathematiklemen nicht so wichtig sei. Wenn wir andererseits Mathematiker betrachten, die neue Erkenntnisse in Mathematik entwickeln, so können wir ihr kreatives Potential nicht übersehen. Die wesentlichen Fragen sind also: Was bedeutet Kreativität in der Schulmathematik? Welche Methoden zur Förderun mathematischer Kreativität in der Schule können benutzt werden? Welches wissenschaftliche Wissen, d.h. welche Forschungsergebnisse, haben wir über die Bedeutung mathematischer Kreativität?

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anon (1990): Lehrplan Mathematik. Lehrplanrevision Gesamtschule. Sekundarstufe I.—Hamburg: Behörde für Schule, Jugend und Berufsbildung, Amt für SchuleGoogle Scholar
  2. Anon. (1991): A Sampler of Mathematics Assessments.—Sacramento (CA): California Dept. of EducationGoogle Scholar
  3. Bergström, M. (1991): Luovuus ja aivotoiminta (Creativity and brain function).—In: R. Haavikko; J.-E. Ruth/ Eds., Luovuuden ulottuyuudet (Dimensions of creativity). 159-172. Weilin+Göös: Espoo.Google Scholar
  4. Bergström, M. (1985): Ihmisaivot ja matemattikka (Human brain and mathematics).— In: Matemaattisten Aineiden Aikakauskirja 49 (3), 211–215.Google Scholar
  5. Bishop, A. (1981): Visuelle Mathematik.—In: H.-G. Steiner: B. Winkelmann (Hrsg.), Fragen des Geometrieunterrichts. 166–184, Köln: Aulis Verlag (Untersuchungen zum Mathematikunterricht, IDM; 1)Google Scholar
  6. Branthwaite, A. (1986): Creativity and Cognitive Skills.—In: A. Gellatly (Ed.), The Skilful Mind 183–197, Milton Keynes: Open University PressGoogle Scholar
  7. Clarke, D. J.; Sullivan, P. A. (1992): Responses to open-ended tasks in mathematics: characteristics and implications—In: W. Geeslin; K. Graham (eds.), Proceedings of the PME 16. Volume I, 137–144 Durham (NH): University of New HampshireGoogle Scholar
  8. Cockcroft Report (1982): Mathematics counts. Report of the Committee of Inquiry into the Teaching of Mathematics in Schools.—London: H.M.S.O.Google Scholar
  9. Haylock, D. W. (1987): A framework for assessing mathematical creativity in school children.—In: Educational Studies in Mathematics 18 (1), 59–74.Google Scholar
  10. Kantowski, M. G. (1980): Some thoughts on teaching for problem solving.—In: NCTM Yearbook 1980, 195–203.Google Scholar
  11. Kiesswetter, K. (1983): Modellierung von Problemlöseprozessen.—In: Mathematikunterricht 29 (3), 71–101Google Scholar
  12. Leung, S. S. (1993): Mathematical problem posing: the influence of task formats, mathematics knowledge, and creative thinking.—In: I. Hirabayashi; N. Nohda; K. Shigematsu; F.-L. Lin (Eds.): Proceedings of the 17th PME Conference Vol. III, 33–40, University of Tsukuba: TsukubaGoogle Scholar
  13. Mason, J. (1991): Mathematical problem solving: open, closed and exploratory in the UK.—In: International Reviews on Mathematical. Education 23 (1), 14–19Google Scholar
  14. NCTM (1981): Priorities in School Mathematics. Executive Summary of the PRISM Project. Reston (VA): NTCMGoogle Scholar
  15. Nohda, N. (1988): Problem solving using “open-endend problems” in mathematics teaching.—In: H. Burkhardt; S. Groves; A. Schoenfeld; K. Stacey (Eds.): Problem solving—A World View, 225–234, Nottingham: Shell CentreGoogle Scholar
  16. Nohda, N. (1991): Paradigm of the “open-approach” method in mathematics teaching: Focus on mathematical problem solving.—In: International Reviews on Mathematical Education 23 (2), 32–37Google Scholar
  17. Nohda, N. (1995): Teaching and Evaluating Using “Open-Ended Problem” in Classroom.—In: International Reviews on Mathematical Education 27 (2), 57–61Google Scholar
  18. Pehkonen, E. (1987): The Meaning of Problem Solving for Childrens’ Development.—In: E. Pehkonen (Ed.); Articles on Mathematics Education, 71–86. Department of Teacher Education. University of Helsinki (Research Report; 55)Google Scholar
  19. Pehkonen, E. (1989): Der Umgang mit Problemfeldern im Mathematikunterricht der Sek. I.—In: Beiträge zum Mathematikunterricht 1989, 290–293, Bad Salzdetfurth: Verlag FranzbeckerGoogle Scholar
  20. Pehkonen, E. (1991a): Developments in the understanding of problem solving.—In: International Reviews on Mathematical Education 23 (2), 46–50Google Scholar
  21. Pehkonen, E. (1991b): Zwei Mode des Denkens: Implikationen zum Mathematikunterricht.—In: Mathematica didactica 14 (1) 46–59Google Scholar
  22. Pehkonen, E. (1993): What are Finnish teachers’ conceptions about the teaching of problem solving in mathematics?—In: European Journal for Teacher Education 16 (3), 237–256Google Scholar
  23. Pehkonen. E. (1995a): Introduction: Use of Open-Ended Problems—In: ZDM 27 (2), 55–57.Google Scholar
  24. Pehkonen, E. (1995b): On pupils’ reactions to the use of openended problems in mathematics.—In: Nordic Studies in Mathematics Education 3 (4), 43–57Google Scholar
  25. Shimada, S. (Ed.) (1977): Open-end approach in arithmetic and mathematics—A new proposal toward teaching improvement. Tokyo: Mizuumishobo (In Japaneses. There exists a (partial) translation into English which I received from Jerry P. Becker (Sojthern Illinois University, Carbondale).).Google Scholar
  26. Silver, E. A. (1993): On mathematical problem posing.—In: I. Hirabayashi; N. Nohda; K. Shigematsu; F.-L. Lin (Eds.), Proceedings of the 17th PME Conference. Vol. I, 66–85, University of Tsukuba: TsukubaGoogle Scholar
  27. Silver, E. A. (1995): The Nature and Use of Open Problems in Mathematics Education: Mathematical and Pedagogical Perspectives.—In: International Reviews on Mathematical Education 27 (2), 67–72Google Scholar
  28. Silver, E. A.; Cai, J. (1996): An analysis of arithmetic problem posing by middle school students.—In: Journla for Research in Mathematics Education 27 (5), 521–539Google Scholar
  29. Silver, E. A.; Mamona, J. (1989): Problem posing by middle school mathematics teachers.—In: C. A. Maher; G. A. Goldin; R. B. Davis (Eds.); Proceedings of PME-NA 11. Volume 1, 263–269, New Brunswick (NJ): Rutgers UniversityGoogle Scholar
  30. Springer, S. P.; Deutsch, G. (1985): Left Brain, Right Brain.— New York: Freeman (2. edition)Google Scholar
  31. Stacey, K. (1991): Linking application and acquisition of mathematical ideas through problem solving.—In: International Reviews on Mathematical Education 23 (1), 8–14Google Scholar
  32. Stacey, K. (1995): The Challenges of Keeping Open Problem Solving Open in School Mathematics.—In: ZDM 27 (2), 62–67Google Scholar
  33. Treffers, A. (1991): Realistic mathematics education, in The Netherlands 1980–1990.—In: L. Streefland (Ed.): Realistic mathematics education in primary school. 11–20, Utrecht: Freudenthal InstituteGoogle Scholar
  34. Wachsmuth, I. (1981): Two modes of thinking—also relevant for the learning of mathematics?—In: For the Learming of Mathematics 2 (2), 38–45Google Scholar
  35. Wheatley, G. H.; Mitchell, R.; Frankland, R. L.; Kraft, R. (1978): Hemispheric specialization and cognitive development: implications for mathematics education.—In: Journal for Research in Mathematics Education 9 (1), 20–32Google Scholar
  36. Wiliam, D. (1994): Assessing authentic tasks: alternatives to mark-schemes.—In: Nordic Studies in Mathematics Education 2 (1), 48–68.Google Scholar
  37. Williams, D. (1989): Assessment of open-ended work in the secondary school.—In: D. F. Robitaille (Ed.); Evaluation and Assessment in Mathematics Education 135–140, Paris: Unesco (Science and Technology Education. Document Series, 32)Google Scholar
  38. Zimmermann, B. (1991): Offene Probleme für den Mathematikunterricht und ein Ausblick auf Forschungsfragen.—In: SZM 23 (2), 38–46Google Scholar

Copyright information

© ZDM 1997

Authors and Affiliations

  • Erkki Pehkonen
    • 1
  1. 1.Dept. of Teacher EductionUniversity of HelsinkiHelsinkiFinland

Personalised recommendations