Advertisement

ZDM

pp 1–15 | Cite as

Profiles of teachers’ general pedagogical knowledge: nature, causes and effects on beliefs and instructional quality

  • Caroline NehlsEmail author
  • Johannes König
  • Gabriele Kaiser
  • Sigrid Blömeke
Original Article
  • 29 Downloads

Abstract

The aim of the research described in this paper was to identify qualitatively different profiles of teachers’ general pedagogical knowledge (GPK) as a central component of their competence. We applied a mixed Rasch model to a sample of 462 mathematics and non-mathematics teachers who were tested using a short version of the TEDS-M test for GPK. The analysis revealed two profiles that were characterized by (quantitative) differences in their overall GPK level as well as (qualitative) differences in how well these groups did on specific items. The profiles differed mainly on items dealing with adaptivity, notably on a set related to Bruner’s modes of representation. A person-focused comparison of the profiles showed that teachers who had undergone training for teaching mathematics had a higher chance of belonging to the profile with strength on these and other adaptivity items. The profiles were validated against teachers’ beliefs and their instructional quality. The results showed that the two groups differed significantly in their epistemological as well as teaching and learning beliefs. Moreover, they differed significantly in the cognitive activation level of their instruction.

Keywords

General pedagogical knowledge In-service teachers Knowledge profiles Opportunities to learn Teacher beliefs Instructional quality 

Notes

Acknowledgements

The project TEDS-Validate (“Teacher Education and Development Study–Validierung der Instrumente aus der internationalen Vergleichsstudie TEDS-M und ihrer Follow-Up-Studie TEDS-FU”) was funded by the German Ministry of Education and Research (BMBF; Project number 01PK15006B). The analyses prepared for this article and the views expressed are those of the authors and do not necessarily reflect the views of the BMBF.

Supplementary material

11858_2019_1102_MOESM1_ESM.pdf (379 kb)
Supplementary material 1 (PDF 379 kb)

References

  1. Alles, M., Seidel, T., & Gröschner, A. (2018). Establishing a positive learning atmosphere and conversation culture in the context of a video-based teacher learning community. Professional Development in Education, 11(1), 1–14.Google Scholar
  2. Anderson, L., & Krathwohl, D. R. (Eds.). (2001). A taxonomy for learning, teaching, and assessing. A revision of Bloom’s taxonomy of educational objectives. New York: Longman.Google Scholar
  3. Baghaei, P., & Carstensen, C. H. (2013). Fitting the mixed Rasch model to a reading comprehension test. Identifying reader types. Practical Assessment, Research & Evaluation, 18(5), 1–13.Google Scholar
  4. Baumert, J., & Kunter, M. (2006). Stichwort: Professionelle Kompetenz von Lehrkräften. Zeitschrift für Erziehungswissenschaft, 9(4), 469–520.CrossRefGoogle Scholar
  5. Blömeke, S. (2012). Does greater teacher knowledge lead to student orientation? The relationship between teacher knowledge and teacher beliefs. In J. König (Ed.), Teachers’ pedagogical beliefs. Definition and operationalisation—connections to knowledge and performance—development and change (pp. 15–35). Münster: Waxmann.Google Scholar
  6. Blömeke, S., & Kaiser, G. (2012). Homogeneity or heterogeneity? Profiles of opportunities to learn in primary teacher education and their relationship to cultural context and outcomes. ZDM - The International Journal on Mathematics Education, 44(3), 249–264.CrossRefGoogle Scholar
  7. Blömeke, S., Paine, L., Houang, R. T., Hsieh, F.-J., Schmidt, W. H., Tatto, M. T., et al. (2008). Future teachers’ competence to plan a lesson. First results of a six-country study on the efficiency of teacher education. ZDM - The International Journal on Mathematics Education, 40(5), 749–762.CrossRefGoogle Scholar
  8. Blömeke, S., Buchholtz, N., Suhl, U., & Kaiser, G. (2014). Resolving the chicken-or-egg causality dilemma: The longitudinal interplay of teacher knowledge and teacher beliefs. Teaching and Teacher Education, 37, 130–139.CrossRefGoogle Scholar
  9. Brühwiler, C. (2014). Adaptive Lehrkompetenz und schulisches. Lernen Effekte handlungssteuernder Kognitionen von Lehrpersonen auf Unterrichtsprozesse und Lernergebnisse der Schülerinnen und Schüler (Pädagogische Psychologie und Entwicklungspsychologie (Vol. 91). Münster: Waxmann.Google Scholar
  10. Brühwiler, C., Hollenstein, L., Affolter, B., Biedermann, H., & Oser, F. (2017). Welches Wissen ist unterrichtsrelevant? Validierung dreier Messinstrumente zur Erfassung des pädagogisch-psychologischen Wissens. Zeitschrift für Bildungsforschung, 7(3), 209–228.CrossRefGoogle Scholar
  11. Bruner, J. S. (1964). The course of cognitive growth. American Psychologist, 19, 1–15.CrossRefGoogle Scholar
  12. Bruner, J. S. (1966). Toward a theory of instruction. Cambridge: Harvard University Press.Google Scholar
  13. de Ayala, R. J., & Santiago, S. Y. (2017). An introduction to mixture item response theory models. Journal of School Psychology, 60, 25–40.CrossRefGoogle Scholar
  14. Depaepe, F., & König, J. (2018). General pedagogical knowledge, self-efficacy and instructional practice: Disentangling their relationship in pre-service teacher education. Teaching and Teacher Education, 69, 177–190.CrossRefGoogle Scholar
  15. Desimone, L. M. (2009). Improving impact studies of teachers’ professional development. Toward better conceptualizations and measures. Educational Researcher, 38(3), 181–199.CrossRefGoogle Scholar
  16. Dicke, T., Parker, P. D., Holzberger, D., Kunina-Habenicht, O., Kunter, M., & Leutner, D. (2015). Beginning teachers’ efficacy and emotional exhaustion. Latent changes, reciprocity, and the influence of professional knowledge. Contemporary Educational Psychology, 41, 62–72.CrossRefGoogle Scholar
  17. Doyle, W. (1985). Recent research on classroom management Implications for teacher preparation. Journal of Teacher Education, 36(3), 31–35.CrossRefGoogle Scholar
  18. Embretson, S. (2007). Mixed Rasch models for measurement in cognitive psychology. In M. Davier & C. H. Carstensen (Eds.), Multivariate and mixture distribution Rasch models. Extensions and applications (Statistics for Social and Behavioral Sciences) (pp. 235–253). New York: Springer Science + Business Media LLC.Google Scholar
  19. Gräsel, C., & Trempler, K. (Eds.). (2017). Entwicklung von Professionalität pädagogischen Personals. Interdisziplinäre Betrachtungen, Befunde und Perspektiven. Wiesbaden: Springer Fachmedien Wiesbaden.Google Scholar
  20. Grigutsch, S., Raatz, U., & Törner, G. (1998). Einstellungen gegenüber Mathematik bei Mathematiklehrern. Journal für Mathematik-Didaktik, 19(1), 3–45.CrossRefGoogle Scholar
  21. Grothus, I., Renz, M., Rzejak, D., Schlamp, K., Daschner, P., Imschweiler, V., et al. (2018). Recherchen für eine Bestandsaufnahme der Lehrkräftefortbildung in Deutschland. Ergebnisse des Projektes Qualitätsentwicklung in der Lehrkräftefortbildung. Forum Lehrerfortbildung, 47, Teil 1.Google Scholar
  22. Hartig, J., & Frey, A. (2012). Konstruktvalidierung und Skalenbeschreibung in der Kompetenzdiagnostik durch die Vorhersage von Aufgabenschwierigkeiten. Psychologische Rundschau, 63(1), 43–49.CrossRefGoogle Scholar
  23. Jentsch, A., Schlesinger, L., Heinrichs, H., Kaiser, G., König, J., & Blömeke, S. (2019). Unterrichtsqualität unter einer mathematikdidaktischen Perspektive—Konzeptualisierung, Messung und Validierung. Journal für Mathematik-Didaktik (under review).Google Scholar
  24. Kleickmann, T., Hardy, I., Pollmeier, J., & Möller, K. (2011). Zur Struktur naturwissenschaftlichen Wissens von Grundschulkindern. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 43(4), 200–212.CrossRefGoogle Scholar
  25. Klemenz, S., & König, J. (2019). Modellierung von Kompetenzniveaus im pädagogischen Wissen bei angehenden Lehrkräften. Zur kriterialen Beschreibung von Lernergebnissen der fächerübergreifenden Lehramtsausbildung. Zeitschrift für Pädagogik, 65(3), 355–377.Google Scholar
  26. Klieme, E., & Baumert, J. (2001). Identifying national cultures of mathematics education: Analysis of cognitive demands and differential item functioning in TIMSS. European Journal of Psychology of Education, 16(3), 385–402.CrossRefGoogle Scholar
  27. König, J. (2014). Designing an international instrument to assess teachers’ general pedagogical knowledge (GPK): Review of studies, considerations, and recommendations. Technical paper prepared for the OECD Innovative Teaching for Effective Learning (ITEL)—Phase II Project: A Survey to Profile the Pedagogical Knowledge in the Teaching Profession (ITEL Teacher Knowledge Survey), Paris: OECD.Google Scholar
  28. König, J. (2015). Measuring classroom management expertise (CME) of teachers. A video-based assessment approach and statistical results. Cogent Education, 2(1), 1–15.CrossRefGoogle Scholar
  29. König, J. (2019). PlanvoLL-D: Planungskompetenz von angehenden Lehrerinnen und Lehrern im Fach Deutsch. In N. McElvany, W. Bos, H. G. Holtappels, & A. Ohle-Peters (Eds.), Bedingungen und Effekte von Lehrerbildung, Lehrkraftkompetenzen und Lehrkrafthandeln (pp. 67–85). Münster: Waxmann.Google Scholar
  30. König, J., & Blömeke, S. (2010). Pädagogisches Unterrichtswissen (PUW). Dokumentation der Kurzfassung des TEDS-M-Testinstruments zur Kompetenzmessung in der ersten Phase der Lehrerausbildung. Berlin: Humboldt-Universität.Google Scholar
  31. König, J., & Kramer, C. (2016). Teacher professional knowledge and classroom management. On the relation of general pedagogical knowledge (GPK) and classroom management expertise (CME). ZDM Mathematics Education, 48(1–2), 139–151.CrossRefGoogle Scholar
  32. König, J., & Pflanzl, B. (2016). Is teacher knowledge associated with performance? On the relationship between teachers’ general pedagogical knowledge and instructional quality. European Journal of Teacher Education, 39(4), 419–436.CrossRefGoogle Scholar
  33. König, J., & Seifert, A. (Eds.). (2012). Lehramtsstudierende erwerben pädagogisches Professionswissen. Ergebnisse der Längsschnittstudie LEK zur Wirksamkeit der erziehungswissenschaftlichen Lehrerausbildung. Münster: Waxmann.Google Scholar
  34. König, J., Blömeke, S., Paine, L., Schmidt, W. H., & Hsieh, F.-J. (2011). General pedagogical knowledge of future middle school teachers. On the complex ecology of teacher education in the United States, Germany, and Taiwan. Journal of Teacher Education, 62(2), 188–201.CrossRefGoogle Scholar
  35. König, J., Blömeke, S., & Kaiser, G. (2015). Early career mathematics teachers’ general pedagogical knowledge and skills Do teacher education, teaching experience, and working conditions make a difference? International Journal of Science and Mathematics Education, 13(2), 331–350.CrossRefGoogle Scholar
  36. König, J., Kaiser, G., Blömeke, S., Jentsch, A., Schlesinger, L., Nehls, C., et al. (2019). Teaching and learning in the lower secondary mathematics classroom. Analyzing the links between pedagogical competence, instructional quality, and student achievement (under review).Google Scholar
  37. Kunter, M., & Klusmann, U. (2010). Die Suche nach dem kompetenten Lehrer—ein personenzentrierter Ansatz. In W. Bos (Ed.), Schulische Lerngelegenheiten und Kompetenzentwicklung. Festschrift für Jürgen Baumert (pp. 207–230). Waxmann: Münster.Google Scholar
  38. Lauermann, F., & König, J. (2016). Teachers’ professional competence and wellbeing. Understanding the links between general pedagogical knowledge, self-efficacy and burnout. Learning and Instruction, 45, 9–19.CrossRefGoogle Scholar
  39. Lenske, G., Wagner, W., Wirth, J., Thillmann, H., Cauet, E., Liepertz, S., et al. (2016). Die Bedeutung des pädagogisch-psychologischen Wissens für die Qualität der Klassenführung und den Lernzuwachs der Schüler/innen im Physikunterricht. Zeitschrift für Erziehungswissenschaft, 19(1), 211–233.CrossRefGoogle Scholar
  40. Lo, Y., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88(3), 767–778.CrossRefGoogle Scholar
  41. Lohse-Bossenz, H., Kunina-Habenicht, O., Dicke, T., Leutner, D., & Kunter, M. (2015). Teachers’ knowledge about psychology. Development and validation of a test measuring theoretical foundations for teaching and its relation to instructional behavior. Studies in Educational Evaluation, 44, 36–49.CrossRefGoogle Scholar
  42. Lohse-Bossenz, H., Holzberger, D., Kunina-Habenicht, O., Seidel, T., & Kunter, M. (2018). Wie fach(un)abhängig ist bildungswissenschaftliches Wissen? Messinvarianz und fachspezifische Unterschiede. Zeitschrift für Erziehungswissenschaft, 21(5), 991–1019.CrossRefGoogle Scholar
  43. Lubke, G. H., & Muthén, B. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10(1), 21–39.CrossRefGoogle Scholar
  44. Lubke, G. H., & Neale, M. (2008). Distinguishing between latent classes and continuous factors with categorical outcomes. Class invariance of parameters of factor mixture models. Multivariate behavioral research, 43(4), 592–620.CrossRefGoogle Scholar
  45. McDonnell, L. M. (1995). Opportunity to learn as a research concept and a policy instrument. Educational Evaluation and Policy Analysis, 17(3), 305–322.CrossRefGoogle Scholar
  46. Ministerium für Schule, Jugend und Kinder des Landes Nordrhein-Westfalen. (2004). Didaktisches Grundlagenstudium Mathematik. für das Lehramt an Grund-, Haupt- und Realschulen sowie den entsprechenden Jahrgangsstufen der Gesamtschulen. Fächerspezifische Vorgaben.Google Scholar
  47. Minnameier, G., Hermkes, R., & Mach, H. (2015). Kognitive Aktivierung und Konstruktive Unterstützung als Prozessqualitäten des Lehrens und Lernens. Zeitschrift für Pädagogik, 61(6), 837–856.Google Scholar
  48. Morin, A. J. S., & Marsh, H. W. (2014). Disentangling shape from level effects in person-centered analyses. An illustration based on university teachers’ multidimensional profiles of effectiveness. Structural Equation Modeling: A Multidisciplinary Journal, 22(1), 39–59.CrossRefGoogle Scholar
  49. Muthén, L., & Muthén, B. (1998–2012). Mplus. Statistical analysis with latent variables. User’s guide. https://www.statmodel.com/download/usersguide/Mplus%20user%20guide%20Ver_7_r3_web.pdf.
  50. Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling. A Monte Carlo simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 14(4), 535–569.CrossRefGoogle Scholar
  51. Praetorius, A.-K., Klieme, E., Herbert, B., & Pinger, P. (2018). Generic dimensions of teaching quality. The German framework of three basic dimensions. ZDM Mathematics Education, 47, 97.Google Scholar
  52. Ramaswamy, V., Desarbo, W. S., Reibstein, D. J., & Robinson, W. T. (1993). An empirical pooling approach for estimating marketing mix elasticities with PIMS data. Marketing Science, 12(1), 103–124.CrossRefGoogle Scholar
  53. Rost, J. (1990). Rasch models in latent classes. An integration of two approaches to item analysis. Applied Psychological Measurement, 14(3), 271–282.CrossRefGoogle Scholar
  54. Schulze-Stocker, F., Holzberger, D., Kunina-Habenicht, O., Terhart, E., & Kunter, M. (2016). Spielen Studienschwerpunkte wirklich eine Rolle? Zum Zusammenhang von bildungswissenschaftlichen Studienschwerpunkten, selbst eingeschätzten Kenntnissen und gemessenem Wissen am Ende eines Lehramtsstudiums. Zeitschrift für Erziehungswissenschaft, 19(3), 599–623.CrossRefGoogle Scholar
  55. Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland. (2004). Standards für die Lehrerbildung: Bildungswissenschaften. (Beschluss der Kultusministerkonferenz vom 16.12.2004), Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland (KMK).Google Scholar
  56. Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland. (2017). Sachstand in der Lehrerbildung (Stand: 07.03.2017).Google Scholar
  57. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1–23.CrossRefGoogle Scholar
  58. Tatto, M. T., Schwille, J., Senk, S., Ingvarson, L., Peck, R., & Rowley, G. (2008). Teacher Education and Development Study in Mathematics (TEDS-M): Policy, practice, and readiness to teach primary and secondary mathematics Conceptual framework. East Lansing: Teacher Education and Development International Study Center.Google Scholar
  59. von Eye, A. (1999). Kognitive Komplexität—Messung und Validität. Zeitschrift für Differentielle und Diagnostische Psychologie, 20(2), 81–96.CrossRefGoogle Scholar
  60. Voss, T., & Kunter, M. (2013). Teachers’ general pedagogical/psychological knowledge. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers Results from the COACTIV project (Mathematics teacher education) (Vol. 8, pp. 207–228). New York: Springer.Google Scholar
  61. Voss, T., Kunter, M., & Baumert, J. (2011). Assessing teacher candidates’ general pedagogical/psychological knowledge: Test construction and validation. Journal of Educational Psychology, 103(4), 952–969.CrossRefGoogle Scholar
  62. Voss, T., Kunter, M., Seiz, J., Hoehne, V., & Baumert, J. (2014). Die Bedeutung des pädagogisch-psychologischen Wissens von angehenden Lehrkräften für die Unterrichtsqualität. Zeitschrift für Pädagogik, 60(2), 184–201.Google Scholar
  63. Voss, T., Kunina-Habenicht, O., Hoehne, V., & Kunter, M. (2015). Stichwort Pädagogisches Wissen von Lehrkräften. Empirische Zugänge und Befunde. Zeitschrift für Erziehungswissenschaft, 18(2), 187–223.CrossRefGoogle Scholar
  64. Weinert, F. E. (2001). Concept of competence: A conceptual clarification. In D. S. Rychen & L. H. Salganik (Eds.), Defining and selecting key competencies (pp. 45–65). Ashland: Hogrefe & Huber Publishers.Google Scholar
  65. Wilson, S. M., Shulman, L. S., & Richert, A. E. (1987). 150 different ways’ of knowing: Representations of knowledge in teaching. In J. Calderhead (Ed.), Exploring teachers’ thinking (Cassel education (pp. 104–124). London: Cassell.Google Scholar
  66. Yoon, K. S., Duncan, T., Lee, S. W.-Y., Scarloss, B., & Shapley, K. (2007). Reviewing the evidence on how teacher professional development affects student achievement (Issues and Answers Report REL 2007–No. 033), Washington, DC: U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance, Regional Educational Laboratory Southwest.Google Scholar

Copyright information

© FIZ Karlsruhe 2019

Authors and Affiliations

  1. 1.Department of Education and Social Sciences, Faculty of Human SciencesUniversity of CologneCologneGermany
  2. 2.Mathematics Education, Faculty of EducationUniversity of HamburgHamburgGermany
  3. 3.Learning Sciences InstituteAustralian Catholic UniversityBrisbaneAustralia
  4. 4.Centre of Educational Measurement (CEMO)University of OsloOsloNorway

Personalised recommendations