Advertisement

ZDM

, Volume 51, Issue 5, pp 835–844 | Cite as

Teaching reader engagement as an aspect of proof

  • Henrik Kragh SørensenEmail author
  • Kristian Danielsen
  • Line Edslev Andersen
Original Article

Abstract

For the past decade, philosophers of mathematical practice have examined the nature and function of proofs in mathematical practice, most often in mathematical research practice. More recently they have examined how mathematicians assess and get to know a proof not just by reading it, but through active engagement with the proof. For example, mathematicians traverse gaps in the proof by filling in details. This paper examines the relevance of this literature to the teaching of mathematics. In particular, it examines how reader engagement can be taught as an aspect of proofs in the context of upper-secondary mathematics education, and the argument is illustrated by teaching material on Hero’s formula, which was developed for and tested in Danish upper-secondary mathematics teaching.

Keywords

Proof Reader engagement with proof Mathematical practice Using source-centred history of mathematics in teaching Hero’s formula 

Notes

Acknowledgements

We thank Andreas Pedersen (Sct. Knuds Gymnasium) for implementing the teaching material of the first and second author on Hero’s formula, and for allowing us to interview him and access the reports of his students.

References

  1. Andersen, L. E. (2019). Acceptable gaps in mathematical proofs. Synthese (forth-coming).Google Scholar
  2. Barany, M. J., & MacKenzie, D. (2014). Chalk: Materials and concepts in mathematics research. In C. Coopmans, J. Vertesi, M. E. Lynch, & S. Woolgar (Eds.), Representation in scientific practice revisited (pp. 107–129). Cambridge: MIT Press.CrossRefGoogle Scholar
  3. Cabassut, R., Conner, A., İşçimen, F. A., Furinghetti, F., Jahnke, H. N., & Morselli, F. (2012). Conceptions of proof—In research and teaching. In G. Hanna & M. de Villiers (Eds.), Proof and proving in mathematics education. The 19th ICMI Study (pp. 169–190). Dordrecht: Springer.Google Scholar
  4. Cuomo, S. (2006). Ancient mathematics: Sciences of antiquity. London: Routledge.Google Scholar
  5. Danielsen, K., Gertz, E., & Sørensen, H. K. (2018). Facilitating source-centered history of mathematics in Danish upper-secondary mathematics education. In K. M. Clark, T. H. Kjeldsen, S. Schorcht, & C. Tzanakis (Eds.), Mathematics, education and history: Towards a harmonious partnership (pp. 85–100). Cham: Springer.CrossRefGoogle Scholar
  6. Danielsen, K., & Sørensen, H. K. (2014). Vækst i nationens tjeneste. Hvordan Verhulst fik beskrevet logistisk vækst. København: Matematiklærerforeningen.Google Scholar
  7. Danielsen, K., & Sørensen, H. K. (2015). Using authentic sources in teaching logistic growth: A narrative design perspective. In E, Barbin, U. T. Jankvist, & T. H. Kjeldsen (Eds), History and epistemology in mathematics education. Proceedings of the Seventh European Summer University (pp. 499–510). Danish School of Education, Aarhus University.Google Scholar
  8. Danielsen, K., & Sørensen, H. K. (2016). Herons formel. Hvordan en aleksandriner fik sat mål på alle slags trekanter. København: Matematiklærerforeningen.Google Scholar
  9. Davis, P. J., & Hersh, R. (1981). The mathematical experience. Boston and New York: Mariner Books.Google Scholar
  10. Dawson, J. W. (2006). Why do mathematicians re-prove theorems? Philosophia Mathematica, 14, 269–286.CrossRefGoogle Scholar
  11. Dutilh Novaes, C. (2016). Reductio Ad Absurdum from a dialogical perspective. Philosophical Studies, 173, 2605–2628.CrossRefGoogle Scholar
  12. Dutilh Novaes, C. (2018). A dialogical conception of explanation in mathematical proofs. In P. Ernest (Ed.), The philosophy of mathematics education today (pp. 81–98). Cham: Springer.CrossRefGoogle Scholar
  13. Ernest, P. (1994). The dialogical nature of mathematics. In P. Ernest (Ed.), Mathematics, education and philosophy: An international perspective (pp. 33–48). London: The Falmer Press.Google Scholar
  14. Fallis, D. (2003). Intentional gaps in mathematical proofs. Synthese, 134(1–2), 45–69.CrossRefGoogle Scholar
  15. Glunk, C., Strand, H. E., Taisbak, C. M., & Tortzen, C. G. (2006). Q. E. D. Platon og Euklid tegner og fortæller. København: Gyldendal.Google Scholar
  16. Hanna, G., & Barbeau, E. (2010). Proofs as bearers of mathematical knowledge. In G. Hanna, H. N. Jahnke, & H. Pulte (Eds.), Explanation and proof in mathematics: Philosophical and educational perspectives (pp. 85–100). Dordrecht: Springer.CrossRefGoogle Scholar
  17. Heinze, A. (2010). Mathematicians’ individual criteria for accepting theorems and proofs: An empirical approach. In G. Hanna, H. N. Jahnke, & H. Pulte (Eds.), Explanation and proof in mathematics: Philosophical and educational perspectives (pp. 101–111). Dordrecht: Springer.CrossRefGoogle Scholar
  18. Hersh, R. (1979). Some proposals for reviving the philosophy of mathematics. Advances in Mathematics, 31, 31–50.CrossRefGoogle Scholar
  19. Inglis, M., & Alcock, L. (2012). Expert and novice approaches to reading mathematical proofs. Journal for Research in Mathematics Education, 43(4), 358–390.CrossRefGoogle Scholar
  20. Inglis, M., & Alcock, L. (2013). Skimming: A response to Weber and Mejía-Ramos. Journal for Research in Mathematics Education, 44, 471–475.Google Scholar
  21. Jahnke, H. N., Arcavi, A., Barbin, E., Bekken, O., Furinghetti, F., Idrissi, A. E., et al. (2002). The use of original sources in the mathematics class-room. In J. Fauvel & J. Van Maanen (Eds.), History in mathematics education The ICMI Study (pp. 291–328). Dordrecht: Springer.CrossRefGoogle Scholar
  22. Joyce, D. E. (1998). Euclid’s elements. https://mathcs.clarku.edu/~djoyce/java/elements/elements.html. Accessed 30 Apr 2018.
  23. Ju, S., Löwe, B., Müller, T., & Xie, Y. (2016). Cultures of mathematics and logic: Selected papers from the conference in Guangzhou, China, November 9–12, 2012. Birkhäuser.Google Scholar
  24. Kjeldsen, T. H., & Petersen, P. H. (2014). Bridging history of the concept of function with learning of mathematics: Students’ meta-discursive rules, concept formation and historical awareness. Science & Education, 23(1), 29–45.CrossRefGoogle Scholar
  25. Læreplan Matematik, A. (2017). Undervisningsministeriet. https://uvm.dk/-/media/filer/uvm/gym-laereplaner-2017/stx/matematik-a-stx-august-2017.pdf. Accessed 1 Sep 2017.
  26. Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. New York: Cambridge University Press.CrossRefGoogle Scholar
  27. Larvor, B. (1998). Lakatos: An introduction. London: Routledge.Google Scholar
  28. Larvor, B. (2016). Mathematical cultures. The London meetings 2012–2014. Birkhäuser.Google Scholar
  29. Löwe, B., & Müller, T. (Eds.). (2010). PhiMSAMP. Philosophy of mathematics: Sociological aspects and mathematical practice. London: College Publications.Google Scholar
  30. Manders, K. (2008). The Euclidean diagram. In P. Mancosu (Ed.), The philosophy of mathematical practice (pp. 80–133). Oxford: Oxford University Press.CrossRefGoogle Scholar
  31. Matematik ABC stx. (2017). Vejledning. Undervisningsministeriet. https://uvm.dk/-/media/filer/uvm/gym-vejledninger-til-laereplaner/stx/matematik-a-b-c-stx-vejledning-2017.pdf. Accessed 1 Sep 2017.
  32. Netz, R. (1999/2004). The shaping of deduction in Greek mathematics: A study in cognitive history. Ideas in Context 51. Cambridge: Cambridge University Press.Google Scholar
  33. Paseau, A. C. (2016). What’s the point of complete rigour? Mind, 125(497), 177–207.CrossRefGoogle Scholar
  34. Pengelley, D. (2011). Teaching with primary historical sources: Should it go main-stream? Can It? In V. Katz & C. Tzanakis (Eds.), Recent developments on introducing a historical dimension in mathematics education (pp. 1–8). Washington DC: Mathematical Association of America.Google Scholar
  35. Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 7(1), 5–41.CrossRefGoogle Scholar
  36. Sfard, A. (2007). When the rules of discourse change, but nobody tells you: making sense of mathematics learning from a commognitive standpoint. Journal of the Learning Sciences, 16(4), 565–613.CrossRefGoogle Scholar
  37. Sfard, A. (2010). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge: Cambridge University Press.Google Scholar
  38. Weber, K., Inglis, M., & Mejía-Ramos, J. P. (2014). How mathematicians obtain conviction: Implications for mathematics instruction and research on epistemic cognition. Educational Psychologist, 49(1), 36–58.CrossRefGoogle Scholar
  39. Weber, K., & Mejía-Ramos, J. P. (2011). Why and how mathematicians read proofs: An exploratory study. Educational Studies in Mathematics, 76(3), 329–344.CrossRefGoogle Scholar
  40. Weber, K., & Mejía-Ramos, J. P. (2013). On mathematicians’ proof skimming: a reply to Inglis and Alcock. Journal for Research in Mathematics Education, 44, 464–471.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2019

Authors and Affiliations

  1. 1.Section for History and Philosophy of Science, Department of Science EducationUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of Mathematics, Centre for Science StudiesAarhus UniversityAarhusDenmark

Personalised recommendations