Advertisement

ZDM

pp 1–13 | Cite as

Promoting active citizenship in mathematics teaching

  • Katja MaassEmail author
  • Michiel Doorman
  • Vincent Jonker
  • Monica Wijers
Original Article
  • 37 Downloads

Abstract

Mathematical and scientific knowledge are integral to preparing our population to be actively engaged and responsible citizens. Science and mathematics education, however, has mainly focused on concepts and skills detached from societal implications. In this paper we present an interdisciplinary international design research study in which we developed teaching and professional development materials connecting mathematics and science education to citizenship education. We outline the design research process, its theoretical basis as well as the design products. The study shows that it is indeed possible to develop such approaches supporting active citizenship and thereby the development of 21st century skills in mathematics education, thus strengthening the role of mathematics education in the STEM field.

Keywords

Mathematical modelling Inquiry-based learning Socio-scientific issues Numeracy Teachers’ professional development Design research 

Notes

Acknowledgements

The project MaSDiV received funding from the European Union Erasmus + Programme under grant agreement no. 582943-EPP-1-2016-2-DE-EPPKA3-PI-POLICY. This paper reflects only the authors’ views and the European Union is not liable for any use that may be made of the information contained herein.

References

  1. Applebaum, S., Barker, B., & Pinzino, D. (2006). Socioscientific issues as context for conceptual understanding of content. Paper presented at the National Association for Research in Science Teaching, San Francisco, CA.Google Scholar
  2. Ärlebäck, J. B., & Doerr, H. (2018). Students’ interpretations and reasoning about phenomena with negative rates of change throughout a model development sequence. ZDM Mathematics Education, 50(1/2), 187–200.  https://doi.org/10.1007/s11858-017-0881-5.CrossRefGoogle Scholar
  3. Artigue, M., & Blomhøj, M. (2013). Conceptualising inquiry-based education in mathematics. ZDM—The International Journal on Mathematics Education, 45(6), 797–810.CrossRefGoogle Scholar
  4. Askew, M., Brown, M., Rhodes, V., Johnsons, D., & Wiliam, D. (1997). Effective teachers of numeracy. London, UK: Kings College.Google Scholar
  5. Barzel, B., & Selter, C. (2015). Die DZLM-Gestaltungsprinzipien für Fortbildungen. Journal für Mathematik-Didaktik, 36(2), 259–284.CrossRefGoogle Scholar
  6. Baumert, J., & Kunter, M. (2013). The COACTIV model of teachers’ professional competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers: Results from the COACTIV project. Berlin, Germany: Springer.Google Scholar
  7. Blum, W., & Leiss, D. (2007). How do students and teachers deal with modelling problems? In C. Haines, W. Blum, P. Galbraith, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 222–231). Chichester, UK: Horwood.CrossRefGoogle Scholar
  8. Burkhardt, H. (2018a). Ways to teach modelling—A 50 year study. ZDM Mathematics Education, 50(1/2), 61–75.CrossRefGoogle Scholar
  9. Burkhardt, H. (2018b). Towards research-based education. https://www.mathshell.com/papers/pdf/hb_2018_research_based_education.pdf. Accessed Jan 2019.
  10. Burkhardt, H., & Schoenfeld, A. (2003). Improving educational research: Toward a more useful, more influential, and better-funded enterprise. Educational Researcher, 32(9), 3–14.CrossRefGoogle Scholar
  11. Bybee, R. (2010). What is STEM education? Science, 329, 996.CrossRefGoogle Scholar
  12. Clarke, D. M. (1994). Ten key principles from research for the professional development of mathematics teachers. In D. B. Aichele & A. F. Coxfors (Eds.), Professional development for teachers of mathematics. Yearbook of the National Council of Teachers of Mathematics (pp. 37–47). Reston, VA: NCTM.Google Scholar
  13. Clarke, D., & Hollingsworth, H. (2002). Elaborating a model of teacher professional growth. Teaching and Teacher Education, 18(8), 947–967.CrossRefGoogle Scholar
  14. Clayton, M. J. (1997). Delphi: a technique to harness expert opinion for critical decision-making tasks in education. Educational Psychology, 17(4), 373–386.  https://doi.org/10.1080/0144341970170401.CrossRefGoogle Scholar
  15. D’Ambrosio, U. (2003). The role of mathematics in building a democratic society. In B. L. Madison & L. A. Steen (Eds.), Quantitative literacy: Why numeracy matters for schools and colleges (pp. 235–238). Princeton, NJ: National Council on Education and the Disciplines.Google Scholar
  16. Denscomb, M. (2008). Communities of practice. A research paradigm for mixed methods approach. Journal of Mixed Methods Research, 2(3), 270–283.  https://doi.org/10.1177/1558689808316807.CrossRefGoogle Scholar
  17. Dewey, J. (1916). Democracy and education. New York, NY: Macmillan.Google Scholar
  18. Dorier, J.-L., & Maass, K. (2014). Inquiry-based mathematics education. Encyclopedia of Mathematics Education (pp. 300–304). Heidelberg, Germany: Springer.Google Scholar
  19. EC (2013). Reducing early school leaving: Key messages and policy support. Final report of the thematic working group on early school leaving.Google Scholar
  20. English, L. D. (2016). Advancing mathematics education research within a STEM environment. Research in Mathematics Education in Australasia, 2012–2015, 353–371.Google Scholar
  21. English, L. D., & Gainsburg, J. (2016). Problem solving in a 21st century mathematics curriculum. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (3rd ed., pp. 313–335). New York: Taylor and Francis.Google Scholar
  22. English, L. D., & Watson, J. (2018). Modelling with authentic data in sixth grade. ZDM Mathematics Education, 50(1/2), 103–115.  https://doi.org/10.1007/s11858-017-0896-y.CrossRefGoogle Scholar
  23. Eurydice (2016). Promoting citizenship, common values of freedom, tolerance and non-discrimination through education. https://webgate.ec.europa.eu/fpfis/mwikis/eurydice/images/1/14/Leaflet_Paris_Declaration.pdf. Accessed 24 Mar 2016.
  24. Geiger, V., Goos, M., & Forgasz, H. (2015). A rich interpretation of numeracy for the 21st century: a survey of the state of the field. ZDM Mathematics Education, 47(4), 531–548.CrossRefGoogle Scholar
  25. Gravemeijer, K. (2007). Emergent modelling as a precursor to mathematical modelling. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (pp. 137–144). New York, NY: Springer.CrossRefGoogle Scholar
  26. Gravemeijer, K., & Cobb, P. (2006). Design research from a learners’ perspective. In J. V. D. Akker, K. Gravemeijer, S. Mc Keeney, & N. Nieveen (Eds.), Educational design research (pp. 17–51). Oxford, UK: Routledge Chapman & Hall.Google Scholar
  27. Gupta, U. G., & Clarke, R. E. (1996). Theory and application of the Delphi technique: A bibliography (1975–1994). Technological Forecasting and Social Change, 53, 185–211.CrossRefGoogle Scholar
  28. Guskey, T. R. (2000). Evaluating professional development. Thousand Oaks, CA: Cirwin.Google Scholar
  29. Hazelkorn, E., Ryan, C., Beernaert, Y., Constantinou, C. P., Deca, L., Grangeat, M., Karikorpi, M., Lazoudis, A. Casulleras, R., & Welzel-Breuer, M. (2015). Science education for responsible citizenship. http://ec.europa.eu/research/swafs/pdf/pub_science_education/KI-NA-26-893-EN-N.pdf. Accessed Jan 2019.
  30. Herman, B., Sadler, T., Zeidler, D., & Newton, M. (2018). A socioscientific issues approach to environmental education. In G. Reis & J. Scott (Eds.), International perspectives on the theory and practice of environmental education: A reader (pp. 145–161). Berlin: Springer.  https://doi.org/10.1007/978-3-319-67732-3_11.CrossRefGoogle Scholar
  31. Kaiser, G. (1995). Realitätsbezüge im Mathematikunterricht—Ein Überblick über die aktuelle und historische Diskussion. In G. Graumann, T. Jahnke, G. Kaiser, & J. Meyer (Eds.), Materialien für einen realitätsbezogenen Mathematikunterricht. Bad Salzdetfurth ü (pp. 66–84). Hildesheim, Germany: Verlag Franzbecker.Google Scholar
  32. Kaiser, G., Bracke, M., Göttlich, S., & Kaland, C. (2013). Authentic complex modelling problems in mathematics education. In A. Damlamian, J. F. Rodrigues, & R. Sträßer (Eds.), Educational interfaces between mathematics and industry (pp. 287–297). New York, NY: Springer.CrossRefGoogle Scholar
  33. Kaiser, G., Schwarz, B., & Buchholz, N. (2011). Authentic modelling problems in mathematics education. In G. Kaiser, W. Blum, R. B. Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling: ICTMA14 (pp. 591–602). New York, NY: Springer Science & Business Media.CrossRefGoogle Scholar
  34. Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM Mathematics Education, 38(3), 302–310.CrossRefGoogle Scholar
  35. Knippels, M. C. P. J., & van Dam, F. W. (2017). PARRISE, Promoting attainment of responsible research and innovation in science education, FP7—Rethinking science, rethinking education. Impact, 2017(5), 52–54.CrossRefGoogle Scholar
  36. Lipowsky, F., & Rzejak, D. (2012). Lehrerinnen und Lehrer als Lerner: Wann gelingt der Rollentausch? Merkmale und Wirkungen wirksamer Lehrerfortbildungen. Schulpädagogik heute, 3(5), 1–17.Google Scholar
  37. Maass, K. (2007). Modelling in class: What do we want students to learn. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering and economics–ICTMA 12 (pp. 63–78). Chichester, UK: Horwood.CrossRefGoogle Scholar
  38. Maass, K. (2011). How can teachers’ beliefs affect their professional development? ZDM—The International Journal on Mathematics Education, 43(4), 573–586.CrossRefGoogle Scholar
  39. Maass, K. (2018). Scaling up innovative teaching approaches in mathematics: Supporting teachers to take up a new role as professional development course leaders for inquiry-based learning. Journal of Education and Training Studies, 6(7), 1–16.  https://doi.org/10.11114/jets.v6i7.3261.CrossRefGoogle Scholar
  40. Maass, K., & Engeln, K. (2018). Impact of professional development involving modelling on teachers and their teaching. ZDM Mathematics Education, 50(1), 273–285.  https://doi.org/10.1007/s11858-018-0911-y.CrossRefGoogle Scholar
  41. McLaughlin, M. W., & Talbert, J. E. (2006). Building school-based teacher learning communities: Professional strategies to improve student achievement (Vol. 45). New York, NY: Teachers College Press.Google Scholar
  42. Mischo, C., & Maass, K. (2013). The effect of teacher beliefs on student competence in mathematical modeling–An intervention study. Journal of Education and Training Studies, 1(1), 19–38.CrossRefGoogle Scholar
  43. Nieveen, N. (2007). Formative evaluation in educational design research. In T. Plomp & N. Nieveen (Eds.), An introduction in educational design research (pp. 89–102). Enschede, Netherlands: SLO.Google Scholar
  44. Niss, M. (1992). Applications and modelling in school mathematics. Directions for future development. Roskilde, Denmark: IMFUFA Roskilde Universitetscenter.Google Scholar
  45. Niss, M., Blum, W., & Galbraith, P. L. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (pp. 3–32). New York, NY: Springer.CrossRefGoogle Scholar
  46. Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections: A report to the Nuffield Foundation. London, UK: Nuffield Foundation.Google Scholar
  47. Owen, R., MacNaghten, P., & Stilgoe, J. (2009). Responsible research and innovation: From science in society to science for society, with society. Science and Public Policy, 39, 751–760.CrossRefGoogle Scholar
  48. Palm, T. (2007). Features and impact of the authenticity of applied mathematical school tasks. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (pp. 201–208). New York, NY: Springer.CrossRefGoogle Scholar
  49. Radakovic, N. (2015). “People can go against the government”: Risk-based decision making and high school students’ concepts of society. Canadian Journal of Science, Mathematics and Technology Education, 15(3), 276–288.  https://doi.org/10.1080/14926156.2015.1062938.CrossRefGoogle Scholar
  50. Radford, L. (2010). The anthropological turn in mathematics education and its implication on the meaning of mathematical activity and classroom practice. Acta Didactica Universitatis Comenianae Mathematics, 10, 103–120.Google Scholar
  51. Ratcliff, M., & Grace, M. (2003). Science education for citizenship. Teaching socio-scientific issues. Maidenhead, Philadelphia, PA: Open University Press.Google Scholar
  52. Sadler, T. D., Barab, S. A., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37(4), 371–391.  https://doi.org/10.1007/s11165-006-9030-9.CrossRefGoogle Scholar
  53. Schleicher, A. (Ed.). (2012). Preparing teachers and developing school leaders for the 21st century: Lessons from around the world. Paris: OECD.  https://doi.org/10.1787/9789264174559-en.Google Scholar
  54. Shulman, L. S. (1986). Paradigms and research programs in the study of teaching: A contemporary perspective. In M. C. Wittrock (Ed.), Handbook of research in teaching (pp. 3–36). New York, NY: Macmillan.Google Scholar
  55. Skovsmose, O. (1998). Linking mathematics education and democracy: Citizenship, mathematical archaeology, mathemacy and deliberative interaction. ZDM Mathematics Education, 98(6), 195–203.CrossRefGoogle Scholar
  56. Steen, L. A. (2001). Mathematics and democracy: The case for quantitative literacy. Princeton, NJ: National Council on Education and the Disciplines.Google Scholar
  57. Swan, M. (2005). Improving learning in mathematics: Challenges and strategies. Sheffield, UK: Teaching and Learning Division, Department for Education and Skills Standards Unit.Google Scholar
  58. Swan, M. (2006). Collaborative learning in mathematics: A challenge to our beliefs and practices. London, UK: National Institute for Advanced and Continuing Education (NIACE) for the National Research and Development Centre for Adult Literacy and Numeracy (NRDC).Google Scholar
  59. Swan, M. (2007). The impact of task-based professional development on teachers’ practices and beliefs: A design research study. Journal of Mathematics Teacher Education, 10(4–6), 217–237.CrossRefGoogle Scholar
  60. Tirosh, D., & Graeber, A. O. (2003). Challenging and changing mathematics teaching practices. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Second international handbook of mathematics education (pp. 643–688). Dordrecht: Kluwer.CrossRefGoogle Scholar
  61. Van den Akker, J., Gravemeijer, K., McKenney, S., & Nieveen, N. (2006). Educational design research (an introduction). In J. Van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 3–7). London, UK: Routledge.CrossRefGoogle Scholar
  62. Vorhölter, K. (2018). Conceptualization and measuring of metacognitive modelling competencies: empirical verification of theoretical assumptions. ZDM Mathematics Education, 50(1–2), 343–354.  https://doi.org/10.1007/s11858-017-0909-x.CrossRefGoogle Scholar
  63. Vos, P. (2015). Authenticity in extra-curricular mathematics activities; Researching authenticity as a social construct. In G. Stillman, W. Blum, & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice: Cultural, social and cognitive influences (pp. 105–114). New York, NY: Springer.CrossRefGoogle Scholar
  64. Walker, K. A. (2003). Students’ understanding of the nature of science and their reasoning on socioscientific issues: A web-based learning inquiry. Unpublished dissertation. Tampa, FL: University of South Florida.Google Scholar
  65. Zeidler, D. L., & Nichols, B. H. (2009). Socio-scientific issues: Theory and practice. Journal of Elementary Science Education, 21(2), 49–58.CrossRefGoogle Scholar
  66. Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39, 35–62.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2019

Authors and Affiliations

  1. 1.International Centre for STEM EducationUniversity of Education at FreiburgFreiburgGermany
  2. 2.Freudenthal InstituteUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations