, Volume 50, Issue 1–2, pp 233–244 | Cite as

Mathematical modelling with digital tools—a quantitative study on mathematising with dynamic geometry software

  • Gilbert GreefrathEmail author
  • Corinna Hertleif
  • Hans-Stefan Siller
Original Article


The use of digital tools in mathematics lessons has recently gained in significance, especially because of ongoing technical developments. Particularly in the context of mathematical modelling, digital tools have become more and more important. They have been deployed for many years and are currently being intensively discussed from a didactical point of view. This paper discusses to what extent modelling processes using digital tools can be described theoretically, and surveys significant empirical findings in this field. Based on a quantitative control study with 709 students, we especially investigated the competence of mathematising. We compared the competence development of a test-group that worked with digital tools, to a control-group that worked with paper and pencil on the same tasks during a four-lesson intervention on geometric modelling tasks. We find a comparable improvement of mathematising in both groups. This competence development was also investigated in relation to the influence of attitudes towards the software used and program-related self-efficacy. We find program-related self-efficacy, but not attitudes towards the used software, to be a significant predictor of the gain in competency. These results are discussed with respect to different performance studies examining the use of dynamic geometry software.


Modelling Digital tools Dynamic geometry software Self-efficacy 


  1. Adan, I. J. B. F., Perrenet, J. C., & Sterk, H. J. M. (2005). De kracht van wiskundig modelleren. Eindhoven: Technische Universiteit Eindhoven.Google Scholar
  2. Agarwal, R., Sambamurthy, V., & Stair, R. M. (2000). Research report: The evolving relationship between general and specific computer self-efficacy—An empirical assessment. Information Systems Research, 11(4), 418–430.CrossRefGoogle Scholar
  3. Arzarello, F., Ferrara, F., & Robutti, O. (2012). Mathematical modelling with technology: The role of dynamic representations. Teaching Mathematics and Its Applications, 31(1), 20–30.CrossRefGoogle Scholar
  4. Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs: Prentice-Hall.Google Scholar
  5. Barzel, B., Hußmann, S., & Leuders, T. (2005). Computer, Internet & Co. im Mathematikunterricht. Berlin: Cornelsen Scriptor.Google Scholar
  6. Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho (Ed.), The proceedings of the 12th international congress on mathematical education—Intellectual and attitudinal challenges (pp. 73–96). New York: Springer.Google Scholar
  7. Blum, W., Alsina, C., Biembengut, M. S., Bouleau, N., Confrey, J., Galbraith, P., & Henn, H.-W. (2002). ICMI study 14: Applications and modelling in mathematics education discussion document. Educational Studies in Mathematics, 51, 149–171.CrossRefGoogle Scholar
  8. Blum, W., & Leiß, D. (2007). How do students and teachers deal with mathematical modelling problems? The example sugarloaf and the DISUM project. In C. Haines, P. L. Galbraith, W. Blum & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 222–231). Chichester: Horwood.CrossRefGoogle Scholar
  9. Borba, M. C., Clarkson, P., & Gadanidis, G. (2013). Learning with the use of the internet. In · M. A. K. Clements, A. Bishop, C. Keitel-Kreidt, J. Kilpatrick & F. K.-S. Leung (Eds.), Third international handbook of mathematics education. New York: Springer.Google Scholar
  10. Borba, M. C., & Villarreal, M. (2005). Humans-with-media and the reorganization of mathematical thinking. New York: Springer.Google Scholar
  11. Borromeo Ferri, R. (2011). Wege zur Innenwelt des mathematischen Modellierens. Kognitive Analysen zu Modellierungsprozessen im Mathematikunterricht. Wiesbaden: Vieweg + Teubner.CrossRefGoogle Scholar
  12. Brosnan, M. (1998). The impact of computer anxiety and self-efficacy upon performance. Journal of Computer Assisted Learning, 14, 223–234.CrossRefGoogle Scholar
  13. Bruder, R. (2008). Evaluationsergebnisse des Projektes TIM. Projektbericht. Accessed 27 March 2017.
  14. Bühner, M. (2011). Einführung in die Test- und Fragebogenkonstruktion. München: Pearson.Google Scholar
  15. Burrill, G., Allison, J., Breaux, G., Kastberg, S., Leatheam, K., & Sanchez, W. (2002). Handheld graphing technology in secondary mathematics: Research findings and implications for classroom practice. Dallas: Texas Instruments.Google Scholar
  16. Carreira, S., Amado, N., & Canário, F. (2013). Students’ modelling of linear functions: How GeoGebra stimulates a geometrical approach. In B. Ubuz et al. (Eds.) CERME 8. Proceedings of the eighth congress of the European Society of Research in Mathematics Education (pp. 1031–1040), Antalya, Turkey. Ankara: Middle East Technical University.Google Scholar
  17. Cassidy, S., & Eachus, P. (2002). Developing the computer user self-efficacy (CUSE) scale: Investigating the relation between computer self-efficacy, gender and experience with computers. Journal of Educational Computing Research, 26(2), 133–153.CrossRefGoogle Scholar
  18. Chan, K. K., & Leung, S. W. (2014). Dynamic geometry software improves mathematical achievement: Systematic review and meta-analysis. Journal of Educational Computing Research, 51(3), 311–325.CrossRefGoogle Scholar
  19. Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quart, 19, 189–211.CrossRefGoogle Scholar
  20. Confrey, J., & Maloney, A. (2007). A theory of mathematical modelling in technological settings. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI study (pp. 57–68). New York: Springer.CrossRefGoogle Scholar
  21. Daher, W., & Shahbari, A. (2015). Pre-Service teachers’ modelling processes through engagement with model eliciting activities with a technological tool. International Journal of Science and Mathematics Education, 13(Suppl 1), 25–46.CrossRefGoogle Scholar
  22. Dix, K. (1999). Enhanced mathematics learning: Does technology make a difference? Mathematics Education Research Group of Australasia (MERGA), 22, 192–199.Google Scholar
  23. Doerr, H. M., & Zangor, R. (2000). Creating meaning for and with the graphing calculator. Educational Studies in Mathematics, 41, 143–163.CrossRefGoogle Scholar
  24. Drijvers, P. (2003). Algebra on screen, on paper, and in the mind. In J. T. Fey, A. Cuoco, C. Kieran, L. McMullin & R. M. Zbiek (Eds.), Computer algebra systems in secondary school mathematics education (pp. 241–268). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  25. Ellington, A. J. (2003). A meta-analysis of the effects of calculators on students’ achievement and attitude levels in precollege mathematics classes. Journal for Research in Mathematics Education, 34(5), 433–463.CrossRefGoogle Scholar
  26. Ellington, A. J. (2006). The effects of non-CAS graphing calculators on student achievement and attitude levels in mathematics: A meta-analysis. School Science and Mathematics, 106(1), 16–26.CrossRefGoogle Scholar
  27. English, L. D., Ärlebäck, J. B., & Mousoulides, N. (2016). Reflections on progress in mathematical modelling research. In Á. Gutiérrez, G. C. Leder & P. Boero (Eds.), The second handbook of research on the psychology of mathematics education (pp. 383–413). Rotterdam: Sense Publishers.CrossRefGoogle Scholar
  28. Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. Zentralblatt für Didaktik der Mathematik, 38(2), 143–162.CrossRefGoogle Scholar
  29. Gallegos, R. R., & Rivera, S. Q. (2015). Developing modelling competencies through the use of technology. In G. A. Stillman, W. Blum & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice (pp. 443–452). Cham: Springer.CrossRefGoogle Scholar
  30. Gawlick, T. (2002). On dynamic geometry software in the regular classroom. Zentralblatt für Didaktik der Mathematik, 34(3), 85–92.CrossRefGoogle Scholar
  31. Geiger, V. (2011). Factors affecting teachers’ adoption of innovative practices with technology and mathematical modelling. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 305–314). Dordrecht: Springer.CrossRefGoogle Scholar
  32. Gellert, U., Jablonka, E., & Keitel, C. (2001). Mathematical literacy and common sense in mathematics education. In B. Atweh, H. Forgasz & B. Nebres (Eds.), Sociocultural research on mathematics education: An international perspective (pp. 57–73). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  33. Gist, M., Schwoerer, C., & Rosen, B. (1989). Effects of alternative training methods on self-efficacy and performance in computer software training. Journal of Applied Psychology, 74(6), 884–891.CrossRefGoogle Scholar
  34. Greefrath, G. (2011). Using technologies: New possibilities of teaching and learning modelling—Overview. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling, ICTMA 14 (pp. 301–304). Dordrecht: Springer.CrossRefGoogle Scholar
  35. Greefrath, G., & Siller, H.-S. (2017). Modelling and simulation with the help of digital tools. In G. A. Stillman, W. Blum & G. Kaiser (Eds.), Mathematical modelling and applications, ICTMA 17 (pp. 529–539). Dordrecht: Springer.CrossRefGoogle Scholar
  36. Greefrath, G., Siller, H.-S., & Weitendorf, J. (2011). Modelling considering the influence of technology. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillmann (Eds.), Trends in teaching and learning of mathematical modelling (pp. 315–329). Dordrecht: Springer.CrossRefGoogle Scholar
  37. Hartig, J., & Kühnbach, O. (2006). Schätzung von Veränderung mit “plausible values” in mehrdimensionalen Rasch-Modellen. In A. Ittel & H. Merkens (Eds.), Veränderungsmessung und Längsschnittstudien in der empirischen Erziehungswissenschaft (pp. 27–44). Wiesbaden: Verlag für Sozialwissenschaften.CrossRefGoogle Scholar
  38. Haug, R. (2012). Problemlösen lernen mit digitalen Medien. Förderung grundlegender Problemlösetechniken durch den Einsatz dynamischer Werkzeuge. Wiesbaden: Vieweg + Teubner Research.CrossRefGoogle Scholar
  39. Henn, H.-W. (1998). The impact of computer algebra systems on modelling activities. In P. Galbraith, W. Blum, G. Booker & I. Huntley (Eds.), Mathematical modelling: Teaching and assessing in a technology rich world (pp. 115–123). Chichester: Horwood.Google Scholar
  40. Henn, H.-W. (2007). Modelling pedagogy—Overview. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI study (pp. 321–324). New York: Springer.CrossRefGoogle Scholar
  41. Hertleif, C. (2017). Dynamic geometry software in mathematical modelling: About the role of programme-related self-efficacy and attitudes towards learning with the software. In G. Aldon, & J. Trgalová (Eds.), Proceedings of the 13th international conference on technology in mathematics teaching (pp. 124–133). Lyon: École Normale Supérieure.Google Scholar
  42. Hertleif, C., & Adamek, C. & Greefrath G. (in press). Assessing sub-competencies of mathematical modelling with the help of item response theory—Presentation of a new test instrument. In G. Stillmann & J. Brown (Eds.), Lines of inquiry in mathematical modelling research in education. New York: Springer.Google Scholar
  43. Heugl, H., Klinger, W., & Lechner, J. (1996). Mathematikunterricht mit Computeralgebra- Systemen: Ein didaktisches Lehrerbuch mit Erfahrungen aus dem österreichischen DERIVE- Projekt. Bonn: Addison-Wesley.Google Scholar
  44. Hischer, H. (2002). Mathematikunterricht und Neue Medien. Hildesheim: Franzbecker.Google Scholar
  45. Igbaria, M., & Iivari, J. (1995). The effects of self-efficacy on computer usage. Omega, 23(6), 587–605.CrossRefGoogle Scholar
  46. Karsten, R., Mitra, A., & Schmidt, D. (2012). Computer self-efficacy: A meta-analysis. Journal of Organizational and End User Computing, 24(4), 54–80.CrossRefGoogle Scholar
  47. Maaß, K. (2010). Classification scheme for modelling tasks. Journal für Mathematik-Didaktik, 31(2), 285–311.CrossRefGoogle Scholar
  48. MacGregor, S. K. (1999). Hypermedia navigation profiles: Cognitive characteristics and information processing strategies. Journal of Educational Computing Research, 20(2), 189–206.CrossRefGoogle Scholar
  49. Marakas, G. M., Johnson, R. D., & Clay, P. F. (2007). The evolving nature of the computer self-efficacy construct: An empirical investigation of measurement construction, validity, reliability and stability over time. Journal of the Association for Information Systems, 8(1), 16–46.CrossRefGoogle Scholar
  50. McCoy, L. P. (1991). The effect of geometry tool software on high school geometry achievement. Journal of Computers in Mathematics and Science Teaching, 10(3), 51–57.Google Scholar
  51. Moreno-Armella, L., Hegedus, S., & Kaput, J. (2008). From static to dynamic mathematics: Historical and representational perspectives. Educational Studies in Mathematics, 68, 99–111.CrossRefGoogle Scholar
  52. Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. Galbraith, H.-W. Henn & M. Niss. (Eds.), Modelling and applications in mathematics education. The 14th ICMI study (pp. 3–32). New York: Springer.CrossRefGoogle Scholar
  53. Pead, D., Bill, R., & Muller, E. (2007). Uses of technologies in learning mathematics through modelling. In W. Blum et al. (Ed.), Modelling and applications in mathematics education. The 14th ICMI study (pp. 309–318). New York: Springer.CrossRefGoogle Scholar
  54. Pierce, R. (2005). Algebraic insight underpins the use of CAS for modeling. The Montana Mathematics Enthusiast (TMME), 2(2), 107–117.Google Scholar
  55. Rajagopal, S., Ismail, Z., Ali, M., & Sulaiman, N. (2015). Attitude of secondary students towards the use of GeoGebra in learning loci in two dimensions. International Education Studies, 8(13), 27–32.CrossRefGoogle Scholar
  56. Savelsbergh, E. R., Drijvers, P. H. M., van de Giessen, C., Heck, A., Hooyman, K., Kruger, J., Michels, B., Seller, F., & Westra, R. H. V. (2008). Modelleren en computer-modellen in de β -vakken: Advies op verzoek van de gezamenlijke β -vernieuwingscommissies. Utrecht: Freudenthal Instituut voor Didactiek van Wiskunde en Natuurwetenschappen.Google Scholar
  57. Schaap, S., Vos, P., & Goedhart, M. (2011). Students overcoming blockages while building a mathematical model: Exploring a framework. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modeling (pp. 137–146). Dordrecht: Springer.CrossRefGoogle Scholar
  58. Siller, H.-St, & Greefrath, G. (2010). Mathematical modelling in class regarding to technology. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the sixth congress of the European Society for Research in Mathematics Education (CERME6) (pp. 2136–2145). Lyon: Institut National de Recherche Pédagogique.Google Scholar
  59. Simmering, M. J., Posey, C., & Piccoli, G. (2009). Computer self-efficacy and motivation to learn in a self-directed online course. Decision Sciences Journal of Innovative Education, 7(1), 99–121.CrossRefGoogle Scholar
  60. Spannagel, C., & Bescherer, C. (2009). Computerbezogene Selbstwirksamkeitserwartung in Lehrveranstaltungen mit Computernutzung. Notes on Educational Informatics- Section A: Concepts and Techniques, 5(1), 23–43.Google Scholar
  61. Sträßer, R. (2002). Research on dynamic geometry software (DGS)—An introduction. Zentralblatt für Didaktik der Mathematik, 34(3), 65.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2018

Authors and Affiliations

  1. 1.Institut für Didaktik der Mathematik und der InformatikWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Lehrstuhl für Mathematik V (Didaktik der Mathematik)Julius-Maximilians-Universität WürzburgWürzburgGermany

Personalised recommendations