Advertisement

ZDM

, Volume 49, Issue 4, pp 545–557 | Cite as

Applying embodied cognition: from useful interventions and their theoretical underpinnings to practical applications

  • Tanja Dackermann
  • Ursula Fischer
  • Hans-Christoph Nuerk
  • Ulrike Cress
  • Korbinian Moeller
Original Article

Abstract

Embodied trainings allowing children to move their whole body in space have recently been shown to foster the acquisition of basic numerical competencies (e.g. magnitude understanding, addition performance). Following a brief summary of recent embodied training studies, we integrate the different results into a unified model framework to elucidate the working mechanisms of embodied trainings: Mapping processes, interaction between different regions of personal space, and the integration of different spatial frames of reference are addressed as potential factors underlying the effectiveness of embodied numerical trainings. In the concluding section, we elaborate on the practical applications of embodied numerical trainings in educational setting. We discuss under which circumstances embodied trainings work best, that is, for which age group and/or which numerical content embodied trainings should be most beneficial and which aspects need to be considered when aiming at applying embodied numerical trainings in formal educational settings like kindergartens or schools.

Keywords

Embodied numerical trainings Basic numerical skills Numerical development Number-space associations 

References

  1. Andres, M., Michaux, N., & Pesenti, M. (2012). Common substrate for mental arithmetic and finger representation in the parietal cortex. NeuroImage, 62(3), 1520–1528. doi: 10.1016/j.neuroimage.2012.05.047.CrossRefGoogle Scholar
  2. Anelli, F., Lugli, L., Baroni, G., Borghi, A. M., & Nicoletti, R. (2014). Walking boosts your performance in making additions and subtractions. Frontiers in Psychology. doi: 10.3389/fpsyg.2014.01459.Google Scholar
  3. Barsalou, L. W. (1999). Perceptions of perceptual symbols. Behavioral and Brain Sciences, 22(04), 637–660. doi: 10.1017/S0140525X99532147.CrossRefGoogle Scholar
  4. Barsalou, L. W. (2010). Grounded cognition: Past, present, and future. Topics in Cognitive Science, 2(4), 716–724. doi: 10.1111/j.1756-8765.2010.01115.x.CrossRefGoogle Scholar
  5. Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation: Evidence against a representational shift. Developmental Science, 14(1), 125–135. doi: 10.1111/j.1467-7687.2010.00962.x.CrossRefGoogle Scholar
  6. Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 1016–1031. doi: 10.1111/j.1467-8624.2008.01173.x.CrossRefGoogle Scholar
  7. Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1831–1840. doi: 10.1098/rstb.2009.0028.CrossRefGoogle Scholar
  8. Burgess, N. (2006). Spatial memory: How egocentric and allocentric combine. Trends in Cognitive Sciences, 10(12), 551–557. doi: 10.1016/j.tics.2006.10.005.CrossRefGoogle Scholar
  9. Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46(1), 3–18. doi: 10.1111/j.1469-7610.2004.00374.x.CrossRefGoogle Scholar
  10. Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14, 534–541. doi: 10.1016/j.tics.2010.09.007.CrossRefGoogle Scholar
  11. Cohen, D. J., & Blanc-Goldhammer, D. (2011). Numerical bias in bounded and unbounded number line tasks. Psychonomic Bulletin & Review, 18(2), 331–338. doi: 10.3758/s13423-011-0059-z.CrossRefGoogle Scholar
  12. Cohen, D. J., & Sarnecka, B. W. (2014). Children’s number-line estimation shows development of measurement skills (not number representations). Developmental Psychology, 50(6), 1640–1652. doi: 10.1037/a0035901.CrossRefGoogle Scholar
  13. Dackermann, T., Fischer, U., Cress, U., Nuerk, H.-C., & Moeller, K. (2016a). Bewegtes Lernen numerischer Kompetenzen. Psychologische Rundschau, 67, 102–109. doi: 10.1026/0033-3042/a000302.CrossRefGoogle Scholar
  14. Dackermann, T., Fischer, U., Huber, S., Nuerk, H.-C., & Moeller, K. (2016b). Training the equidistant principle of number line spacing. Cognitive Processing, 17(3), 243–258. doi: 10.1007/s10339-016-0763-8.CrossRefGoogle Scholar
  15. Dackermann, T., Huber, S., Bahnmueller, J., Nuerk, H. C., & Moeller, K. (2015). An integration of competing accounts on children’s number line estimation. Frontiers in Psychology. doi: 10.3389/fpsyg.2015.00884.Google Scholar
  16. de Hevia, M. D., Girelli, L., Addabbo, M., & Macchi Cassia, V. (2014). Human infants’ preference for left-to-right oriented increasing numerical sequences. Plos One, 9(5), e96412. doi: 10.1371/journal.pone.0096412.CrossRefGoogle Scholar
  17. de Hevia, M. D., Girelli, L., & Macchi Cassia, V. (2012). Minds without language represent number through space: origins of the mental number line. Frontiers in Psychology. doi: 10.3389/fpsyg.2012.00466.Google Scholar
  18. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396. doi: 10.1037/0096-3445.122.3.371.CrossRefGoogle Scholar
  19. Di Luca, S., & Pesenti, M. (2008). Masked priming effect with canonical finger numeral configurations. Experimental Brain Research, 185(1), 27–39. doi: 10.1007/s00221-007-1132-8.CrossRefGoogle Scholar
  20. Domahs, F., Moeller, K., Huber, S., Willmes, K., & Nuerk, H.-C. (2010). Embodied numerosity: Implicit hand-based representations influence symbolic number processing across cultures. Cognition, 116(2), 251–266. doi: 10.1016/j.cognition.2010.05.007.CrossRefGoogle Scholar
  21. Fischer, M. H., Pratt, J., & Adam, J. J. (2007). On the timing of reference frames for action control. Experimental Brain Research, 183(1), 127–132. doi: 10.1007/s00221-007-1104-z.CrossRefGoogle Scholar
  22. Fischer, U., Link, T., Cress, U., Nuerk, H.-C., & Moeller, K. (2015a). Math with the dance mat–on the benefits of embodied numerical training approaches. In V. R. Lee (Ed.), Learning technologies and the body: Integration and implementation in formal and informal learning environments (pp. 149–163). London: Routledge.Google Scholar
  23. Fischer, U., Moeller, K., Bientzle, M., Cress, U., & Nuerk, H.-C. (2011). Sensori-motor spatial training of number magnitude representation. Psychonomic Bulletin & Review, 18(1), 177–183. doi: 10.3758/s13423-010-0031-3.CrossRefGoogle Scholar
  24. Fischer, U., Moeller, K., Huber, S., Cress, U., & Nuerk, H.-C. (2015b). Full-body movement in numerical trainings: A pilot study with an interactive whiteboard. International Journal of Serious Games, 2, 23–35.CrossRefGoogle Scholar
  25. Fritz, A., Ehlert, A., & Balzer, L. (2013). Development of mathematical concepts as basis for an elaborated mathematical understanding. South African Journal of Childhood Education, 3, 38–67.Google Scholar
  26. Fuson, K. C. (1988). Children’s counting and concepts of number. New York: Springer.CrossRefGoogle Scholar
  27. Gabbard, C., Cordova, A., & Ammar, D. (2007). Estimation of reach in peripersonal and extrapersonal space: A developmental view. Developmental Neuropsychology, 32(3), 749–756. doi: 10.1080/87565640701539451.CrossRefGoogle Scholar
  28. Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3–4), 455–479. doi: 10.1080/02643290442000310.CrossRefGoogle Scholar
  29. Gersten, R., Chard, D. J., Jayanthi, M., Baker, S. K., Morphy, P., & Flojo, J. (2009). Mathematics instruction for students with learning disabilities: A meta-analysis of instructional components. Review of Educational Research, 79(3), 1202–1242. doi: 10.3102/0034654309334431.CrossRefGoogle Scholar
  30. Glenberg, A. M. (2010). Embodiment as a unifying perspective for psychology. Wiley Interdisciplinary Reviews, 1(4), 586–596. doi: 10.1002/wcs.55.Google Scholar
  31. Glenberg, A. M., Witt, J. K., & Metcalfe, J. (2013). From the revolution to embodiment: 25 years of. Cognitive Psychology, 8(5), 573–585. doi: 10.1177/1745691613498098.Google Scholar
  32. Göbel, S. M., Shaki, S., & Fischer, M. H. (2011). The cultural number line: A review of cultural and linguistic influences on the development of number processing. Journal of Cross-Cultural Psychology, 42(4), 543–565. doi: 10.1177/0022022111406251.CrossRefGoogle Scholar
  33. Halligan, P. W., Fink, G. R., Marshall, J. C., & Vallar, G. (2003). Spatial cognition: evidence from visual neglect. Trends in Cognitive Sciences, 7(3), 125–133. doi: 10.1016/S1364-6613(03)00032-9.CrossRefGoogle Scholar
  34. Hartmann, M., Grabherr, L., & Mast, F. W. (2012). Moving along the mental number line: Interactions between whole-body motion and numerical cognition. Journal of Experimental Psychology, 38(6), 1416–1427. doi: 10.1037/a0026706.Google Scholar
  35. Helmreich, I., Zuber, J., Pixner, S., Kaufmann, L., Nuerk, H.-C., & Moeller, K. (2011). Language effects on children’s non-verbal number line estimations. Journal of Cross-Cultural Psychology, 42, 598–613. doi: 10.1177/0022022111406026.CrossRefGoogle Scholar
  36. Jordan, N., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2009). Early math matters: Kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45(3), 850–867. doi: 10.1037/a0014939.CrossRefGoogle Scholar
  37. Kaufmann, L., & Nuerk, H.-C. (2006). Die Entwicklung des Rechnens und dessen Störungen: Genese, Modelle, Diagnostik und Intervention [The development of arithmetic and its impairments: Emergence, models, diagnostics, and intervention]. Zeitschrift des BVL, 2, 11–16.Google Scholar
  38. Keulen, R. F., Adam, J. J., Fischer, M. H., Kuipers, H., & Jolles, J. (2002). Selective reaching: evidence for multiple frames of reference. Journal of Experimental Psychology, 28, 515–526. doi: 10.1037/0096-1523.28.3.515.Google Scholar
  39. Klein, E., Moeller, K., Willmes, K., Nuerk, H.-C., & Domahs, F. (2011). The influence of implicit hand-based representations on mental arithmetic. Frontiers in Psychology. doi: 10.3389/Fpsya.2011.00197.Google Scholar
  40. Krajewski, K., Nieding, G., & Schneider, W. (2007). Mengen, zählen, Zahlen: Die Welt der Mathematik verstehen (MZZ) [Magnitudes, counting, numbers: Understanding the world of mathematics]. Berlin: Cornelsen.Google Scholar
  41. Lakoff, G. (1987). Women, fire, and dangerous things: What categories reveal about the mind. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  42. Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York, NY: Basic books.Google Scholar
  43. Link, T., Huber, S., Nuerk, H.-C., & Moeller, K. (2014a). Unbounding the mental number line–new evidence on children’s spatial representation of numbers. Frontiers in Psychology. doi: 10.3389/fpsyg.2013.01021.Google Scholar
  44. Link, T., Moeller, K., Huber, S., Fischer, U., & Nuerk, H.-C. (2013). Walk the number line–An embodied training of numerical concepts. Trends in Neuroscience and Education, 2(2), 74–84. doi: 10.1016/j.tine.2013.06.005.CrossRefGoogle Scholar
  45. Link, T., Nuerk, H.-C., & Moeller, K. (2014c). On the relation between the mental number line and arithmetic competencies. The Quarterly Journal of Experimental Psychology, 67(8), 1597–1613. doi: 10.1080/17470218.2014.892517.CrossRefGoogle Scholar
  46. Link, T., Schwarz, E. J., Huber, S., Fischer, U., Nuerk, H.-C., Cress, U., & Moeller, K. (2014b). Maths on the mat: Embodied training of basic numerical competencies. Zeitschrift Für Erziehungswissenschaft, 17(2), 257–277. doi: 10.1007/s11618-014-0533-2.CrossRefGoogle Scholar
  47. Loetscher, T., Schwarz, U., Schubiger, M., & Brugger, P. (2008). Head turns bias the brain’s internal random generator. Current Biology, 18(2), R60–R62. doi: 10.1016/j.cub.2007.11.015.CrossRefGoogle Scholar
  48. Looi, C. Y., Duta, M., Brem, A.-K., Huber, S., Nuerk, H.-C., & Cohen Kadosh, R. (2016). Combining brain stimulation and video game to promote long-term transfer of learning and cognitive enhancement. Scientific Reports, 6, 22003. doi: 10.1038/srep22003.CrossRefGoogle Scholar
  49. Moeller, K., Fischer, U., Link, T., Wasner, M., Huber, S., Cress, U., & Nuerk, H.-C. (2012). Learning and development of embodied numerosity. Cognitive Processing, 13, Suppl, 1, 271–274. doi: 10.1007/s10339-012-0457-9.CrossRefGoogle Scholar
  50. Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215(5109), 1519–1520. doi: 10.1038/2151519a0.CrossRefGoogle Scholar
  51. Myachykov, A., Scheepers, C., Fischer, M. H., & Kessler, K. (2013). TEST: A tropic, embodied, and situated theory of cognition. Topics in Cognitive Science, 6(3), 442–460. doi: 10.1111/tops.12024.CrossRefGoogle Scholar
  52. Nuerk, H.-C., Moeller, K., & Willmes, K. (2015). Multi-digit number processing–Overview, conceptual clarifications, and language influences. In R. Cohen Kadosh & A. Dowker (Eds.), Oxford handbook of numerical cognition (pp. 106–139). Oxford: Oxford University Press.Google Scholar
  53. Opfer, J. E., & Thompson, C. A. (2006). Even early representations of numerical magnitude are spatially organized: Evidence for a directional magnitude bias in pre-reading preschoolers. In The Cognitive Science Society (Ed.), 28th Annual Conference of the Cognitive Science Society in Cooperation with the 5th International Conference of the Cognitive Science Society (pp. 671–677).Google Scholar
  54. Patro, K., & Haman, M. (2012). The spatial-numerical congruity effect in preschoolers. Journal of Experimental Child Psychology, 111(3), 534–542. doi: 10.1016/j.jecp.2011.09.006.CrossRefGoogle Scholar
  55. Patro, K., Nuerk, H.-C., & Cress, U. (2016). Mental number line in the preliterate brain: The role of early directional experiences. Child Development Perspectives, 10, 172–177. doi: 10.1111/cdep.12179.CrossRefGoogle Scholar
  56. Patro, K., Nuerk, H.-C., Cress, U., & Haman, M. (2014). How number-space relationships are assessed before formal schooling: A taxonomy proposal. Frontiers in Psychology. doi: 10.3389/fpsyg.2014.00419.Google Scholar
  57. Peeters, D., Degrande, T., Ebersbach, M., Verschaffel, L., & Luwel, K. (2016). Children’s use of number line estimation strategies. European Journal of Psychology of Education, 31, 117–134. doi: 10.1007/s10212-015-0251-z.CrossRefGoogle Scholar
  58. Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83(2), 274–278. doi: 10.1037/h0028573.CrossRefGoogle Scholar
  59. Shaki, S., & Fischer, M. H. (2014). Random walks on the mental number line. Experimental Brain Research, 232(1), 43–49. doi: 10.1007/s00221-013-3718-7.CrossRefGoogle Scholar
  60. Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14(3), 237–243. doi: 10.1111/1467-9280.02438.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2017

Authors and Affiliations

  • Tanja Dackermann
    • 1
  • Ursula Fischer
    • 2
  • Hans-Christoph Nuerk
    • 1
    • 3
    • 4
  • Ulrike Cress
    • 1
    • 3
    • 4
  • Korbinian Moeller
    • 1
    • 3
    • 4
  1. 1.Leibniz-Institut für WissensmedienTuebingenGermany
  2. 2.University of RegensburgRegensburgGermany
  3. 3.Eberhard Karls UniversityTuebingenGermany
  4. 4.LEAD Graduate SchoolEberhard Karls UniversityTuebingenGermany

Personalised recommendations