, Volume 48, Issue 5, pp 633–649 | Cite as

Assistance of students with mathematical learning difficulties: how can research support practice?

  • Petra SchererEmail author
  • Kim Beswick
  • Lucie DeBlois
  • Lulu Healy
  • Elisabeth Moser Opitz
Survey Paper


When looking at teaching and learning processes in mathematics education students with mathematical learning difficulties or disabilities are of great interest. To approach the question of how research can support practice to assist these students one has to clarify the group or groups of students that we are talking about. The following contribution firstly concentrates on the problem of labelling the group of students having mathematical difficulties as there does not exist a single definition. This problem might be put down to the different roots of mathematics education on the one hand and special education on the other hand. Research results with respect to concepts and models for instruction are multifaceted based on the specific content and mathematical topics as well as the underlying view of mathematics. Taking into account inclusive education, a closer orientation to mathematical education can be identified and the potential of selected teaching and learning concepts can be illustrated. Beyond this, the role of the teacher, their attitudes and beliefs and the corresponding teacher education programs are discussed.


Mathematical learning difficulties Inclusive education Special education Teacher education 


  1. Abdulhameed, S. H. (2014). Predicting math teachers’ educational beliefs about teaching students with mathematical learning difficulties. Scottish Journal of Arts, Social Sciences and Scientific Studies, 21(2), 111–123.Google Scholar
  2. Ahmed, A. (1987). Better Mathematics. A Curriculum Development Study. London: HMSO.Google Scholar
  3. Ainscow, M. (2013). Developing more equitable education systems: reflections on a three-year improvement initiative. In V. Farnsworth & Y. Solomon (Eds.), Reframing Educational Research (pp. 77–89). London: Routledge.Google Scholar
  4. Andersson, U. (2008). Mathematical competencies in children with different types of learning difficulties. Journal of Educational Psychology, 100(1), 48–66.CrossRefGoogle Scholar
  5. Andersson, U. (2010). Skill development in different components of arithmetic and basic cognitive functions: Findings from a 3-year longitudinal study of children with different types of learning difficulties. Journal of Educational Psychology, 102(1), 115–134.CrossRefGoogle Scholar
  6. Artiles, A., Klingner, J. K., & Tate, W. F. (2006). Representation of minority students in special education: Complicating traditional explanations. Educational Researcher, 35(6), 3–5.CrossRefGoogle Scholar
  7. Bagger, A., & Roos, H. (2014). How research conceptualises the student in need of special education in mathematics Proceedings from MADIF9: The Ninth Swedish Mathematics Education Research Seminar. At Umeå, February 4–5, 2014.Google Scholar
  8. Beaucher, C. (2010). Le rapport au savoir d’enseignants-étudiants en enseignement professionnel: étude de cas. In C. Beaucher & A. Balleux (Eds.), «La formation à l’enseignement professionnel: enjeux sociaux, enjeux scientifiques», Nouveaux Cahiers de la recherche en éducation, 3(1). Accessed 20 April 2016.
  9. Beswick, K. (2007/2008). Influencing teachers’ beliefs about teaching mathematics for numeracy to students with mathematics learning difficulties. Mathematics Teacher Education and Development, 9, 3–20.Google Scholar
  10. Beswick, K. (in press). Raising attainment: What might we learn from teachers’ beliefs about their best and worst mathematics students? In C. Andrà, D. Brunetto, E. Levenson & P. Liljedahl (Eds.). Teaching and learning in math classrooms. Emerging themes in affect-related research: Teachers’ beliefs, students’ engagement and social interaction. New York: Springer.Google Scholar
  11. Borgioli, G. (2008). A critical examination of learning disabilities in mathematics: Applying the lens of ableism. Journal of Thought Paulo Freire Special Issue.
  12. Boyd, B., & Bargerhuff, M. E. (2009). Mathematics education and special education: Searching for common ground and the implications for teacher education. Mathematics Teacher Education and Development, 11, 54–67.Google Scholar
  13. Broderick, A. A., Hawkins, G., Henze, S., Mirasol-Spath, C., Pollack-Berkovits, R. Prozzo, Clune, H., et al. (2012). Teacher counter narratives: transgressing and ‘restorying’ disability in education. International Journal of Inclusive Education, 16(8), 825–842.CrossRefGoogle Scholar
  14. Bull, S. (2008). Deafness, numerical cognition and mathematics. In M. Marschark & P. C. Hauser (Eds.), Deaf cognition: Foundations and outcomes (pp. 170–200). New York: Oxford University Press.CrossRefGoogle Scholar
  15. Burton, L. (2002). Recognising commonalities and reconciling differences in mathematics education. Educational Studies in Mathematics, 50(2), 157–175.CrossRefGoogle Scholar
  16. Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332(6033), 1049–1053.CrossRefGoogle Scholar
  17. Campbell, F. (2001). Inciting legal fictions: Disability’s date with ontology and the ableist body of the law. Griffith Law Review, 10, 42–62.Google Scholar
  18. Charlot, B. (1997). Du rapport au savoir. Éléments pour une théorie. Paris: Éditions Anthropos. Poche Éducation.Google Scholar
  19. D’Souza, R. (2015). Challenging ableism in high school mathematics. Proceedings of the Eighth International Mathematics Education and Society Conference (pp. 429–440). Portland: Ooligan Press.Google Scholar
  20. DeBlois, L. (2014). Le rapport aux savoirs pour établir des relations entre troubles de comportements et difficultés d’apprentissage en mathématiques. Dans Le rapport aux savoirs: Une clé pour analyser les épistémologies enseignantes et les pratiques de la classe. Coordonné par Marie-Claude Bernard, Annie Savard, Chantale Beaucher. Accessed 20 April 2016.
  21. DeBlois, L. (2015). Classroom interactions: Tensions between interpretations and difficulties learning mathematics. Proceedings of the 37th Annual Meeting Canadian Group in Mathematics Education (pp. 171–186). Edmonton: University of Alberta. Accessed 20 April 2016.
  22. DeBlois, L., & Maheux, J. F. (2005). When things don’t go exactly as planned: Leveraging from student teachers’ insights to adapted interventions and professional practice. 15e congrès de l’International Commission on Mathematical Instruction. Brazil: Aguas De Lindoia. Accessed 20 April 2016.
  23. DeBlois L., & Squalli H. (2001). Une modélisation des savoirs d’expérience des orthopédagogues intervenant en mathématiques. In Difficultés d’apprentissage et enseignement: évaluation et intervention (pp. 155–178). Sherbrooke: Éditions du CRP.Google Scholar
  24. DeBlois, L., & Squalli, H. (2002). Implication de l’analyse de productions d’élèves dans la formation des maîtres. Educational Studies in Mathematics, 50(2), 212–237.CrossRefGoogle Scholar
  25. Desautels, J., & Larochelle, M. (2003). À propos de la posture épistémologique des enseignants et enseignantes de science. ICPE. Chapitre D3. Available for viewing online at: Accessed 13 May 2016.
  26. Donaldson, M. (1978). Children’ s minds. London: Fontana/Croom Helm.Google Scholar
  27. Dowker, A. D. (1998). Individual differences in arithmetical development. In C. Donlan (Ed.), The development of mathematical skills (pp. 275–302). London: Psychology Press.Google Scholar
  28. Dowker, A. D. (2004). What works for children with mathematical difficulties?. London: Department for Children, Schools and Families.Google Scholar
  29. Dowker, A. D. (2005). Early identification and intervention for students with mathematics difficulties. Journal of Learning Disabilities, 38, 324–332.CrossRefGoogle Scholar
  30. Dowker, A. D. (2007). What can intervention tell us about the development of arithmetic? Educational and Child Psychology, 24, 64–82.Google Scholar
  31. DSM V (2016). Diagnostical and statistical manual of mental disorders. 5th edition. Accessed 13 April 2016.
  32. Dyson, A., & Gallannaugh, F. (2008). Disproportionality in special needs education in England. The Journal of Special Education, 42(1), 36–46.CrossRefGoogle Scholar
  33. Ellemor-Collins, D., & Wright, R. J. (2007). Assessing pupil knowledge of the sequential structure of number. Educational and Child Psychology, 24(2), 54–63.Google Scholar
  34. Ennemoser, M., & Krajewski, K. (2007). Effekte der Förderung des Teil-Ganzes-Verständnisses bei Erstklässlern mit schwachen Mathematikleistungen. Vierteljahresschrift für Heilpädagogik und ihre Nachbargebiete, 76(3), 228–240.Google Scholar
  35. Ennemoser, M., Krajewski, K., & Schmidt, S. (2011). Entwicklung und Bedeutung von Mengen-Zahlen-Kompetenzen und eines basalen Konventions- und Regelwissens in den Klassen 5-9. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 43(4), 228–242.CrossRefGoogle Scholar
  36. Ernest, P. (1994). Constructivism: Which form provides the most adequate theory of mathematics learning? Journal für Mathematik-Didaktik, 15(3/4), 327–342.CrossRefGoogle Scholar
  37. European Commission (n. d.). Addressing low achievement in mathematics and science. Final Report of the Thematic Working Group on Mathematics, Science and Technology (2010–2013). Accessed 06 June 2016.
  38. Ferri, B. A. (2012). Undermining inclusion? A critical reading of response to intervention (RTI). International Journal of Inclusive Education, 16(8), 863–880.CrossRefGoogle Scholar
  39. Fernandes, S. H. A. A. & Healy, L. (accepted). The challenge of constructing an inclusive school mathematics. Paper accepted for presentation in Topic Group 5: Activities for, and research on, students with special needs. 13th International Congress on Mathematics Education, Hamburg.Google Scholar
  40. Flexer, R. J. (1986). The power of five: The step before the power of ten. Arithmetic Teacher, 34(3), 5–9.Google Scholar
  41. Francis, D., Fletcher, J. M., Stuebing, K. K., Lyon, R. G., Shaywitz, B. A., & Shaywith, S. E. (2005). Psychometric approaches to the identification of LD: IQ and achievement scores are not sufficient. Journal of Learning Disabilities, 38(2), 98–108.CrossRefGoogle Scholar
  42. Freesemann, O. (2014). Schwache Rechnerinnen und Rechner fördern: Eine Interventionsstudie an Haupt-, Gesamt- und Förderschulen. Wiesbaden: Springer Spektrum.CrossRefGoogle Scholar
  43. Fuchs, D., & Fuchs, L. S. (2006). Introduction to response to intervention: What, why, and how valid is it? Reading Research Quarterly, 41(1), 93–99.CrossRefGoogle Scholar
  44. Fuchs, L. S., Powell, S. R., Cirino, P. T., Schumacher, R. F., Marrin, S., Hamlett, C. L., et al. (2014). Does calculation or word-problem instruction provide a stronger route to prealgebraic knowledge? Journal of Educational Psychology, 106(4), 990–1006.CrossRefGoogle Scholar
  45. Fuchs, L. S., Powell, S. R., Seethaler, P. M., Cirino, P. T., Fletcher, J. M., Fuchs, D., & Hamlett, C. L. (2010). The effects of strategic counting instruction, with and without deliberate practice, on number combination skill among students with mathematics difficulties. Learning and Individual Differences, 20(2), 89–100.CrossRefGoogle Scholar
  46. Fuchs, L. S., Powell, S. R., Seethaler, P. M., Cirino, P. T., Fletcher, J. M., Fuchs, D., et al. (2009). Remediating number combination and word problem deficits among students with mathematics difficulties: A randomized control trial. Journal of Educational Psychology, 101(3), 561–576.CrossRefGoogle Scholar
  47. Gaidoschik, M. (2012). First-graders’ development of calculation strategies: How deriving facts helps automatize facts. Journal für Mathematik-Didaktik, 33(2), 287–315.CrossRefGoogle Scholar
  48. Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4–15.CrossRefGoogle Scholar
  49. Gersten, R., Chard, D. J., Jayanthi, M., Baker, S. K., Morphy, O., & Flojo, J. (2009). Mathematics instruction for students with learning disabilities: A meta-analysis of instructional components. Review of Educational Research, 79(3), 1202–1242.CrossRefGoogle Scholar
  50. Gervasoni, A., & Lindenskov, L. (2011). Students with “special rights” for mathematics education. In B. Atweh, M. Graven, & P. Valero (Eds.), Mapping equity and quality in mathematics education (pp. 307–324). New York: Springer.Google Scholar
  51. Gervasoni, A., & Sullivan, P. (2007). Assessing and teaching children who have difficulty learning arithmetic. Educational & Child Psychology, 24(2), 40–53.Google Scholar
  52. Gifford, S. (2005). Young children’s difficulties in learning mathematics. Review of research in relation to dyscalculia. Qualifications and Curriculum Authority (QCA/05/1545). London: Department for Children, Schools and Families.Google Scholar
  53. Ginsburg, P. H. (1997). Mathematics learning disabilities: A view from developmental psychology. Journal of Learning Disabilities, 30(1), 20–33.CrossRefGoogle Scholar
  54. Giroux, J. (1999). La formation professionnelle à l’enseignement des mathématiques en adaptation scolaire: quel rôle peut jouer la didactique? In A. Jeannel, J. P. Martinez, & G. Boutin (Eds.), Les recherches enseignées en espaces francophones. Sciences en construction et enseignement universitaire (Vol. 2, pp. 159–180). Montreal: Les Éditions Logiques.Google Scholar
  55. Grossman, R. (1975). Open-ended lessons bring unexpected surprises. Mathematics Teaching, 71, 14–15.Google Scholar
  56. Hanich, L. B., Jordan, N. C., Kaplan, D., & Dick, J. (2001). Performance across different areas of mathematical cognition in children with learning difficulties. Journal of Educational Psychology, 93(3), 615–626.CrossRefGoogle Scholar
  57. Häsel-Weide, U., Nührenbörger, M., Moser Opitz, E., & Wittich, C. (2013). Ablösung vom zählenden Rechnen. Kallmeyer: Fördereinheiten für heterogene Lerngruppen. Seelze.Google Scholar
  58. Healy, L. (2015). Difference, inclusion and mathematics education: Deconstructing notions of normality. In Anais do VI Seminário Internacional de Pesquisa em Educação Matemática. Pirenópolis: VI SIPEM.Google Scholar
  59. Healy, L., & Fernandes, S. H. A. A. (2011). The role of gestures in the mathematical practices of those who do not see with their eyes. Educational Studies in Mathematics, 77(2), 157–174.CrossRefGoogle Scholar
  60. Healy, L., & Fernandes, S. H. A. A. (2014). The gestures of blind mathematics learners. In L. Edwards, F. Ferrera, & D. Russo-Moore (Eds.), Emerging Perspectives on Gesture and Embodiment in Mathematics (pp. 125–150). Charlotte NC: IAP-Information Age Publishing.Google Scholar
  61. Healy, L., Fernandes, S. H. A. A. & Frant, J. B. (2013). Designing tasks for a more inclusive school mathematics. In Proceedings of ICMI Study 22—Task Design in Mathematics Education (vol. 1, pp. 63–70.). Oxford.Google Scholar
  62. Healy, L., & Powell, A. B. (2013). Understanding and overcoming “Disadvantage” in learning mathematics. In M. A. Clements, A. Bishop, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Third international handbook of mathematics education (pp. 69–100). Dordrecht: Springer.Google Scholar
  63. Hill, H. C., Rowan, B., & Ball, D. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371–406.CrossRefGoogle Scholar
  64. Ise, E., Dolle, K., Pixner, S., & Schulte-Körne, G. (2012). Effektive Förderung rechenschwacher Kinder: Eine Metaanalyse. Kindheit und Entwicklung, 21(3), 181–192.CrossRefGoogle Scholar
  65. Johnson, E., & Semmelroth, C. L. (2014). Special education teacher evaluation: Why it matters, what makes it challenging, and how to address these challenges. Assessment for effective intervention, 39(2), 71–82.CrossRefGoogle Scholar
  66. Kaufmann L., Mazzocco M. M., Dowker A., von Aster M., Göbel S. M., Grabner R. H., Henik A., Jordan N. C., Karmiloff-Smith A. D., Kucian K., Rubinsten O., Szucs D., Shalev R., & Nuerk H. C. (2013). Dyscalculia from a developmental and differential perspective. Frontiers in Psychology. doi: 10.3389/fpsyg.2013.00516.
  67. Kleickmann, T., Richter, D., Kunter, M., Elsner, J., Besser, M., Krauss, S., et al. (2015). Content knowledge and pedagogical content knowledge in Taiwanese and German mathematics teachers. Teaching and Teacher Education, 46, 115–126.CrossRefGoogle Scholar
  68. Kroesbergen, E. H., & Van Luit, J. E. H. (2003). Mathematical interventions for children with special educational needs. Remedial and Special Education, 24, 97–114.CrossRefGoogle Scholar
  69. Maccini, P., Mulcahy, C. A., & Wilson, M. G. (2007). A follow-up of mathematics interventions for secondary students with learning disabilities. Learning Disabilities Research & Practice, 22(1), 58–74.CrossRefGoogle Scholar
  70. Magne, O. (2003). Literature on special educational needs in mathematics: a bibliography with some comments (4th ed.). (Educational and Psychological Interactions, vol. 124). Malmo: School of Education, Malmo University.Google Scholar
  71. Mantoan, M. T. (2009). Inclusão escolar: O que é? Por quê? Como fazer? (2nd ed.). São Paulo: Moderna.Google Scholar
  72. Marcone, R., & Atweh, B. (2015). Who identifies a minority? A meta-research question about the lack of research in mathematics education concerning students with disability. Proceedings of the Eighth International Mathematics Education and Society Conference (pp. 769–779). Portland: Ooligan Press.Google Scholar
  73. Marschark, M., & Hauser, P. (2008). Cognitive underpinnings of learning by deaf and hard-of-hearing students: Differences, diversity, and directions. In M. Marschark & P. C. Hauser (Eds.), Deaf cognition: Foundations and outcomes (pp. 3–23). New York: Oxford University Press.CrossRefGoogle Scholar
  74. Marschark, M., Spencer, P. E., Adams, J., & Sapere, P. (2011). Evidence-based practice in educating deaf and hard-of-hearing children: Teaching to their cognitive strengths and needs. European Journal of Special Needs Education, 26, 3–16.CrossRefGoogle Scholar
  75. Mary, C., & Theis, L. (2007). Les élèves à risque dans des situations problèmes statistiques: stratégies de résolution et obstacles cognitifs. Revue des sciences de l’éducation, 23(3), 579–601.CrossRefGoogle Scholar
  76. Mazzocco, M. M., Devlin, K. T., & McKenney, S. J. (2008). Is it a fact? Timed arithmetic performance of children with mathematical learning disabilities (MLD) varies as a function of how MLD is defined. Developmental Neuropsychology, 33(3), 318–344.CrossRefGoogle Scholar
  77. Mazzocco, M. M., & Myers, G. F. (2003). Complexities in identifying and defining mathematics learning disability in the primary school age years. Annals of Dyslexia, 53, 218–253.CrossRefGoogle Scholar
  78. McDermott, R. (1993). The acquisition of a child by a learning disability. In S. Chaiklin & J. Lave (Eds.), Understanding practice: Perspectives on activity and context (pp. 269–305). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  79. McLeskey, J., & Waldron, N. L. (2011). Educational programs for elementary students with learning disabilities: Can they be both effective and inclusive? Learning Disabilities Research & Practice, 26(1), 48–57.CrossRefGoogle Scholar
  80. Mels (2007). Organization of educational services for at-risk students and students with handicaps, social maladjustments or learning difficulties. Accessed 20 April 2016.
  81. Milo, B. (2003). Mathematics instruction for special-needs students. Effects of instructional variants in addition and subtraction up to 100. Heerenveen: Brouwer & Wielsma.Google Scholar
  82. Mitchell, D. (2014). What really works in special and inclusive education. Using evidence-based teaching strategies. New York: Routledge.Google Scholar
  83. Moeller, K., Pixner, S., Zuber, J., Kaufmann, L., & Nuerk, H.-C. (2011). Early place value understanding as a percursor for later arithmetic performance—a longitudinal study on numerical development. Research in Developmental Disablities, 32(5), 1837–1851.CrossRefGoogle Scholar
  84. Montague, M., & Applegate, B. (2000). Middle school students’ perceptions, persistence and performance in mathematical problem solving. Learning Disabilities Quarterly, 23(3), 215–226.CrossRefGoogle Scholar
  85. Moser Opitz, E. (2000). “Zählen–Zahlbegriff–Rechnen” Theoretische Grundlagen und eine empirische Untersuchung zum mathematischen Erstunterricht in Sonderklassen. Bern: Haupt.Google Scholar
  86. Moser Opitz, E. (2013). Rechenschwäche–Dyskalkulie. Theoretische Klärungen und empirische Studien an betroffenen Schülerinnen und Schülern (2nd ed.). Bern: Haupt.Google Scholar
  87. Moser Opitz, E., & Ramseier, E. (2012). Rechenschwach oder nicht rechenschwach?: Eine kritische Auseinandersetzung mit Diagnosekonzepten, Klassifikationssystemen und Diagnoseinstrumenten unter besonderer Berücksichtigung von älteren Schülerinnen und Schülern. Lernen und Lernstörungen, 1(2), 99–117.CrossRefGoogle Scholar
  88. Moser Opitz, E., Freesemann, O., Grob, U., Prediger, S., Matull, I. & Hußmann, S. (accepted). Remediation for Students with Mathematics Difficulties: An Intervention Study in Middle Schools. Journal of Learning Disabilities.Google Scholar
  89. Murphy, M. M., Mazzocco, M. M., Hanich, L. B., & Early, M. C. (2007). Cognitive characteristics of children with mathematics learning disability (MLD) vary as a function of the cutoff criterion used to define MLD. Journal of Learning Disabilities, 40(5), 458–478.CrossRefGoogle Scholar
  90. Nunes, T. (2004). Teaching mathematics to deaf children. London: Whurr Publishers.Google Scholar
  91. Nunes, T., & Moreno, C. (2002). An intervention program for promoting deaf pupils’ achievement in mathematics. Journal of Deaf Studies and Deaf Education, 7(2), 120–133.CrossRefGoogle Scholar
  92. O’Connor, C., & DeLuca Fernandez, S. (2006). Race, class, and disproportionality: Reevaluating the relationship between poverty and special education placement. Educational Researcher, 35(6), 6–11.CrossRefGoogle Scholar
  93. O’Connor, K., Sterenberg, G., & Dillon, D. (2015). Recognizing the “Authority of Experience” through place in teacher education. Paper presented at Annual Meeting of the American Educational Research Association, Chicago, IL.Google Scholar
  94. Ostad, S. A. (1999). Developmental progression of subtraction strategies: A comparison of mathematically normal and mathematically disabled children. European Journal of Special Needs Education, 14(1), 21–36.CrossRefGoogle Scholar
  95. Pagliaro, C. (2006). Mathematics education and the deaf learner. In D. F. Moores & D. S. Martin (Eds.), Deaf learners: Developments in curriculum and instruction (pp. 29–40). Washington, DC: Gallaudet University Press.Google Scholar
  96. Parmar, R. S., Frazita, R., & Cawley, J. F. (1996). Mathematics assessment for students with mild disabilities: An exploration of content validity. Exceptional Children, 19, 127–136.Google Scholar
  97. Pedrotty Bryant, D., Bryant, B. R., Gersten, R., Scammacca, N., & Chavez, M. M. (2008). Mathematics intervention for first- and second-grade students with mathematics difficulties: The effects of Tier 2 intervention delivered as booster lessons. Remedial and Special Education, 29(1), 20–32.CrossRefGoogle Scholar
  98. Peltenburg, M. (2012). Mathematical potential of special education students. Utrecht: Freudenthal Institute.Google Scholar
  99. Peltenburg, M., & Van den Heuvel-Panhuizen, M. (2012). Teacher perception of the mathematical potential of students in special education in the Netherlands. European Journal for Special Needs Education, 27(3), 391–407.CrossRefGoogle Scholar
  100. Pfister, M., Moser Opitz, E., & Pauli, C. (2015a). Scaffolding for mathematics teaching in inclusive primary classrooms: a video study. ZDM Mathematics Education, 47(7), 1079–1092.CrossRefGoogle Scholar
  101. Pfister, M., Stöckli, M., Moser Opitz, E., & Pauli, C. (2015b). Inklusiven Mathematikunterricht erforschen: Herausforderungen und erste Ergebnisse aus einer Längsschnittstudie. Unterrichtswissenschaft, 43(1), 53–66.Google Scholar
  102. Proulx, J., & Bednarz, N. (2008). The mathematical preparation of secondary mathematics schoolteachers: Critiques, difficulties and future directions. Topics Group 29. ICME 11. Monterrey (Mexico). Accessed 5 May 2016.
  103. Schäfer, J. (2005). Rechenschwäche in der Eingangsstufe der Hauptschule. Lernstand, Einstellungen und Wahrnehmungsleistungen. Eine empirische Studie. Hamburg: Kovač.Google Scholar
  104. Scherer, P. (1997). Productive or reproductive exercises—what is appropriate for low attainers? In C. van den Boer & M. Dolk (Eds.), naar een balans in de reken-wiskundeles—interactie, oefenen, uitleggen en zelfstandig werken (pp. 35–49). Utrecht: Freudenthal instituut.Google Scholar
  105. Scherer, P. (1999). Entdeckendes Lernen im Mathematikunterricht der Schule für Lernbehinderte—Theoretische Grundlegung und evaluierte unterrichtspraktische Erprobung (2nd ed.). Heidelberg: Edition Schindele.Google Scholar
  106. Scherer, P. (2003). Different students solving the same problems—the same students solving different problems. Tijdschrift voor Nascholing en Onderzoek van het Reken-Wiskundeonderwijs, 22(2), 11–20.Google Scholar
  107. Scherer, P. (2013). Natural differentiation in the teaching of mathematics for school beginners. South African Journal for Childhood Education, 3(1), 100–116.Google Scholar
  108. Scherer, P. (2014). Low achievers’ understanding of place value—materials, representations and consequences for instruction. In T. Wassong, D. Frischemeier, P. R. Fischer, R. Hochmuth, & P. Bender (Eds.), Mit Werkzeugen Mathematik und Stochastik lernen—Using Tools for Learning Mathematics and Statistics (pp. 43–56). Wiesbaden: Springer.CrossRefGoogle Scholar
  109. Scherer, P., & Krauthausen, G. (2010). Natural differentiation in mathematics—the NaDiMa project. Panama-Post, 29(3), 14–26.Google Scholar
  110. Scherer, P., & Moser Opitz, E. (2010). Fördern im Mathematikunterricht der Primarstufe. Heidelberg: Springer.CrossRefGoogle Scholar
  111. Shakespeare, T., & Watson, N. (2001). The social model of disability: an outdated ideology? In Exploring Theories and Expanding Methodologies: Where We Are and Where We Need to Go (pp. 9–28). Series: Research in social science and disability (2). JAI: Amsterdam and New York.Google Scholar
  112. Simmt, E. (2015). Observing mathematics in collective learning systems. In T. G. Bartell et al. (Eds.), Proceedings of the 37th annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 1318–1321). East Lansing, MI: Michigan State University.Google Scholar
  113. Skovsmose, O. (2015). Inclusion: A contested concept. In: Anais do VI Seminário Internacional de Pesquisa em Educação Matemática. Pirenópolis: VI SIPEM.Google Scholar
  114. Straehler-Pohl, H., et al. (2014). School mathematics registers in a context of low academic expectations. Educational Studies in Mathematics, 85(2), 175–199.CrossRefGoogle Scholar
  115. Streefland, L. (1990). Free productions in learning and teaching mathematics. In K. Gravemeijer, M. van den Heuvel, & L. Streefland (Eds.), Contexts Free Productions Tests and Geometry in Realistic Mathematics Education (pp. 33–52). Utrecht: Freudenthal Institute.Google Scholar
  116. Streefland, L., & Treffers, A. (1990). Produktiver Rechen-Mathematik-Unterricht. Journal für Mathematik-Didaktik, 11(4), 297–322.CrossRefGoogle Scholar
  117. Swain, K. D., Nordness, P. D., & Leader-Janssen, E. M. (2012). Changes in preservice teacher attitudes toward inclusion. Preventing School Failure: Alternative Education for Children and Youth, 56(2), 75–81.CrossRefGoogle Scholar
  118. Trickett, L., & Sulke, F. (1988). Low attainers can do mathematics. In D. Pimm (Ed.), Mathematics, teachers and children (pp. 109–117). London: Hodder and Stoughton.Google Scholar
  119. UNESCO International Bureau of Education, (2009). International Conference on Education. Inclusive Education: The Way of the Future 28th Session Geneva 25–28 November 2008. UNESCO Paris. Accessed 23 June 2016.
  120. UN-United Nations. (2006). Convention of the Rights of Persons with Disabilities. New York: United Nations.Google Scholar
  121. van den Heuvel-Panhuizen, M. (1991). Ratio in special education. A pilot study on the possibilities of shifting the boundaries. In L. Streefland (Ed.), Realistic Mathematics Education in Primary School. On the Occasion of the Opening of the Freudenthal Institute (pp. 157–181). Utrecht: Freudenthal Institute.Google Scholar
  122. von Glasersfeld, E. (1995a). A constructivist approach to teaching. In L. P. Steffe & J. Gale (Eds.), Constructivism in education (pp. 3–15). Hillsdale: Erlbaum.Google Scholar
  123. von Glasersfeld, E. (1995b). Sensory experience, abstraction, and teaching. In L. P. Steffe & J. Gale (Eds.), Constructivism in education (pp. 369–383). Hillsdale: Erlbaum.Google Scholar
  124. Vukovic, R. K., & Siegel, L. S. (2010). Academic and cognitive characteristic of persistent mathematics difficulty from first through fourth grade. Learning Disabilities Research & Practice, 25(1), 25–38.CrossRefGoogle Scholar
  125. Vygotsky, L. S. (1934). Pensée et Langage. Paris: La Dispute.Google Scholar
  126. WHO-World Health Organisation (2016). International Statistical Classification of Diseases and Related Health Problems 10th Revision. Accessed 13 April 2016.
  127. Wißmann, J., Heine, A., Handl, P., & Jacobs, A. M. (2013). Förderung von Kindern mit isolierter Rechenschwäche und kombinierter Rechen- und Leseschwäche: Evaluation eines numerischen Förderprogramms für Grundschüler. Lernen und Lernstörungen, 2(2), 91–109.CrossRefGoogle Scholar
  128. Wittmann, E. C. (1990). Wider die Flut der ‘bunten Hunde’ und der ‘grauen Päckchen’: Die Konzeption des aktiv-entdeckenden Lernens und des produktiven Übens. In E. C. Wittmann & G. N. Müller (Eds.), Handbuch produktiver Rechenübungen (Vol. 1, pp. 152–166). Stuttgart: Klett.Google Scholar
  129. Wittmann, E. C. (2001). Developing mathematics education in a systemic process. Educational Studies in Mathematics, 48(1), 1–20.CrossRefGoogle Scholar
  130. Woodward, J., & Brown, C. (2006). Meeting the curricular needs of academically low-achieving students in middle grade mathematics. The Journal of Special Education, 40(3), 151–159.CrossRefGoogle Scholar
  131. Zhang, D., & Xin, Y. P. (2012). A follow-up meta-analysis for word-problem-solving interventions for students with mathematics difficulties. The Journal of Educational Research, 105, 303–318.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2016

Authors and Affiliations

  • Petra Scherer
    • 1
    Email author
  • Kim Beswick
    • 2
  • Lucie DeBlois
    • 3
  • Lulu Healy
    • 4
  • Elisabeth Moser Opitz
    • 5
  1. 1.University of Duisburg-EssenEssenGermany
  2. 2.University of TasmaniaHobartAustralia
  3. 3.Université LavalQuebecCanada
  4. 4.Anhanguera University of São PauloSão PauloBrazil
  5. 5.University of ZurichZurichSwitzerland

Personalised recommendations