, Volume 47, Issue 1, pp 1–12 | Cite as

Evidence-based CPD: Scaling up sustainable interventions

  • Bettina Roesken-WinterEmail author
  • Celia Hoyles
  • Sigrid Blömeke
Survey Paper


In this survey paper we approach the challenge of scaling CPD from four perspectives. First, we elaborate on crucial aspects of teacher learning and what taking the learning of these crucial aspects entails. Second, we focus on different CPD frameworks to showcase developments in CPD research and practice over the last 40 years and the influences of different views of CDP. Third, we elaborate what developing CPD in an evidence-based way means, before we finally discuss crucial issues of spreading CPD on a large scale. In this last perspective, we draw on Coburn’s four dimensions characterizing the process of scaling CPD interventions, depth, sustainability, spread, and shift in reform ownership to discuss how the challenge of scaling high-quality CPD might be successfully addressed. Our literature review is based on findings from education research in general and mathematics education research in particular in order to pay attention to both overarching aspects of providing effective CPD and the domain-specific factors of mathematics teaching and learning. Against this background, we identify needs for further research and provide an overview how the papers in this Special Issue of ZDM might address these needs.


Professional Development Mathematics Teacher Professional Learning Continuous Professional Development Teacher Learning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adler, J., Ball, D. L., Krainer, K., Lin, F., & Jowotna, J. (2005). Reflections on an emerging field: researching mathematics teacher education. Educational Studies in Mathematics, 60(3), 359–381.CrossRefGoogle Scholar
  2. Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., et al. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133–180.CrossRefGoogle Scholar
  3. Birman, B. F., Desimone, L., Porter, A. C., & Garet, M. S. (2000). Designing professional development that works. Educational Leadership, 5, 28–33.Google Scholar
  4. Blömeke, S., & Delaney, S. (2012). Assessment of teacher knowledge across countries: a review of the state of research. ZDM–The International Journal on Mathematics Education, 44, 223–247.CrossRefGoogle Scholar
  5. Blömeke, S., Gustafsson, J.-E., & Shavelson, R. (2015). Beyond dichotomies: competence viewed as a continuum. Zeitschrift für Psychologie, 223, 3–13.CrossRefGoogle Scholar
  6. Blömeke, S., Suhl, U., & Kaiser, G. (2011). Teacher education effectiveness: quality and equity of future primary teachers’ mathematics and mathematics pedagogical content knowledge. Journal of Teacher Education, 62(2), 154–171.CrossRefGoogle Scholar
  7. Blömeke, S., Suhl, U., Kaiser, G., & Döhrmann, M. (2012). Family background, entry selectivity and opportunities to learn: what matters in primary teacher education? An international comparison of fifteen countries. Teaching and Teacher Education, 28, 44–55.CrossRefGoogle Scholar
  8. Boesen, J., Helenius, B., & Johansson, B. (2015). National scale professional development in Sweden: theory, policy, practice. ZDM Mathematics Education, 47(1). doi: 10.1007/s11858-014-0653-4 (this issue).
  9. Bolam, R., McMahon, A., Stoll, L., Thomas, S., & Wallace, M. (2005). Creating and sustaining effective professional learning communities (Research Brief R8637). Nottingham: Department for Education and Science, DfES Publications.Google Scholar
  10. Borko, H. (2004). Professional development and teacher learning: mapping the terrain. Educational Researcher, 3(8), 3–15.CrossRefGoogle Scholar
  11. Busch, J., Barzel, B., & Leuders, T. (2015). Promoting secondary teachers’ diagnostic competence with respect to functions: development of a scalable unit in Continuous Professional Development. ZDM Mathematics Education, 47(1). doi: 10.1007/s11858-014-0647-2 (this issue).
  12. Clarke, D. M. (1991). The role of staff development programs in facilitating professional growth. Madison: University of Wisconsin.Google Scholar
  13. Clarke, D., & Hollingsworth, H. (2002). Elaborating a model of teacher professional growth. Teaching and Teacher Education, 18, 947–967.CrossRefGoogle Scholar
  14. Clark-Wilson, A. (2015). Scaling a technology-based innovation: windows on the evolution of mathematics teachers’ practices. ZDM Mathematics Education, 47(1). doi: 10.1007/s11858-014-0635-6 (this issue).
  15. Cobb, P., & Smith, T. (2008). The challenge of scale: Designing schools and districts as learning organizations for instructional improvement in mathematics. In T. Wood, B. Jaworski, K. Krainer, P. Sullivan & D. Tirosh (Eds.), International handbook of mathematics teacher education (Vol. 3, pp. 231–254). Rotterdam, Netherlands: Sense.Google Scholar
  16. Coburn, C. E. (2003). Rethinking scale: moving beyond numbers to deep and lasting change. Educational researcher, 32(6), 3–12.CrossRefGoogle Scholar
  17. Cochran-Smith, M., & Lytle, S. (1999). Relationships of knowledge and practice: teacher learning in communities. Review of Research in Education, 24(2), 251–307.Google Scholar
  18. Cochran-Smith, M., & Lytle, S.L. (2001). Beyond certainty: Taking an inquiry stance on practice. In A. Lieberman & L. Miller (Eds.), Teachers caught in the action. Professional development that matters (pp. 45–58). New York: Teachers College Press.Google Scholar
  19. Confrey, J., Makar, K., & Kazak, S. (2004). Undertaking data analysis of student outcomes as professional development for teachers. ZDM–The International Journal on Mathematics Education, 36(1), 32–40.CrossRefGoogle Scholar
  20. Cooney, T. J. (1994). Research and teacher education: in search of common ground. Journal for Research in Mathematics Education, 25(6), 608–636.CrossRefGoogle Scholar
  21. Darling-Hammond, L., & Richardson, N. (2009). Research Review. Teacher Learning: What Matters? How teachers learn, 66(5), 46–53.Google Scholar
  22. Day, C. (1997). In-service teacher education in Europe: conditions and themes for development in the 21st century. Journal of In-service Education, 23(1), 39–54.CrossRefGoogle Scholar
  23. Day, C. (1999). Developing teachers: The challenges of lifelong learning. London: Routledge Falmer.Google Scholar
  24. Day, C., & Sachs, J. (2004). Professionalism, performativity and empowerment: discourses in the politics, policies and purposes of continuing professional development. In C. Day & J. Sachs (Eds.), International handbook on the continuing professional development of teachers (pp. 3–63). Berkshire: McGraw-Hill.Google Scholar
  25. Desimone, L. M. (2011). Improving impact studies of teachers’ professional development: toward better conceptualizations and measures. Educational Researcher, 38(3), 81–199.Google Scholar
  26. Desimone, L. M., Porter, A. C., Garet, M. S., Yoon, K. S., & Birman, B. F. (2002). Effects of professional development on teachers’ instruction: results from a three-year longitudinal study. Educational Evaluation and Policy Analysis, 24, 81–112.CrossRefGoogle Scholar
  27. DZLM (2014). Theoretischer Rahmen des Deutschen Zentrums für Lehrerbildung Mathematik. Accessed 13 October 2014.
  28. Elmore, R. F. (1996). Getting to scale with good educational practice. Harvard Educational Review, 66(1), 1–26.Google Scholar
  29. Fullan, M. (2000). The return of large-scale reform. Journal of Educational Change, 1, 1–23.CrossRefGoogle Scholar
  30. Garet, M. S., Porter, A. C., Desimore, L., Birman, B. F., & Yoon, K. S. (2001). What makes professional development effective? Results from a national sample of teachers. American Educational Research, 38(4), 915–945.CrossRefGoogle Scholar
  31. Goldsmith, L., Doerr, H., & Lewis, C. (2014). Mathematics teachers’ learning: a conceptual framework and synthesis of research. Journal of Mathematics Teacher Education, 17(1), 5–36.CrossRefGoogle Scholar
  32. Goodchild, S. (2014). Mathematics teaching development: learning from developmental research in Norway. ZDM–The International Journal on Mathematics Education, 46(2), 305–316.CrossRefGoogle Scholar
  33. Goodson, I., & Hargreaves, A. (2003). Series editors’ preface. In J. Sachs (Ed.), The activist teaching profession (pp. ix–xi). Philadelphia: Open University Press.Google Scholar
  34. Guskey, T. R. (2000). Evaluating professional development. Thousand Oaks: Corwin Press.Google Scholar
  35. Guskey, T. R. (2004). Foreword. In C. Day & J. Sachs (Eds.), International handbook on the continuing professional development of teachers (pp. 3–5). Berkshire: McGraw-Hill.Google Scholar
  36. Hargreaves, D. H. (1994). The new professionalism: the synthesis of professional and institutional development. Teaching and Teacher Education, 10(4), 423–438.CrossRefGoogle Scholar
  37. Hargreaves, A., & Fink, D. (2000a). The three dimensions of reform. Educational Leadership, 57(7), 30–34.Google Scholar
  38. Hargreaves, A., & Fink, D. (2000b). The three dimensions of reform. Educational Leadership, 57(7), 30–34.Google Scholar
  39. Henze, I., Van Driel, J. H., & Verloop, N. (2009). Experienced Science Teachers’ Learning in the context of Educational Innovation. Journal of Teacher Education, 60, 184–199.CrossRefGoogle Scholar
  40. Hoyles, C. (1992). Mathematics teaching and mathematics teachers: a meta-case study. For the Learning of Mathematics, 12(3), 32–44.Google Scholar
  41. Hoyles, C. (2010). Creating an inclusive culture in mathematics through subject-specific teacher professional development: a case study from England. The Journal of Mathematics and Culture, 5(1), 43–61.Google Scholar
  42. Hoyles, C., & Ferrini-Mundy, J. (2013). Policy Implications of Developing Mathematics Education Research. In M. A. Clements, A. Bishop, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Third International Handbook of Mathematics Education. New York: Springer.Google Scholar
  43. Huang, R. & Jaworski, B. (2014) (Eds.). Interactive practices in promoting professional development of didacticians and teachers of mathematics: An international perspective. ZDMThe International Journal on Mathematics Education, 46(2).Google Scholar
  44. Jackson, K., Cobb, P., Wilson, J., Webster, M., Dunlap, C., & Appelgate, M. (2015). Investigating the development of mathematics leaders’ capacity to support teachers’ learning on a large scale. ZDM Mathematics Education, 47(1), 1–12. doi: 10.1007/s11858-014-0652-5.
  45. Kaur, B. (2015). What matters? From a small scale to a school-wide intervention. ZDM Mathematics Education, 47(1). doi: 10.1007/s11858-014-0645-4 (this issue).
  46. Kelchtermans, G. (2004). CPD for professional renewal: Moving beyond knowledge for practice. In C. Day & J. Sachs (Eds.), International handbook on the continuing professional development of teachers (pp. 217–237). Berkshire: McGraw-Hill.Google Scholar
  47. Klieme, E., C. Pauli & K. Reusser (2009), “The Pythagoras study”. In J. Tomás & T. seidel (Eds.), The Power of Video Studies in Investigating Teaching and Learning in the Classroom (pp. 137–160). Waxmann, Münster.Google Scholar
  48. Krainer, K. (2001). Teachers’ growth is more than the growth of individual teachers: The case of Gisela. In F. Lin & T. Cooney (Eds.), Making sense of mathematics teacher education (pp. 271–293). Dordrecht: Kluwer.CrossRefGoogle Scholar
  49. Krainer, K. (2002). Investigation into practice as a powerful means of promoting (student) teachers’ professional growth. In J. Novotná (Ed.), European research in mathematics education II. Proceedings of the second conference of the European Society for Research in Mathematics Education (pp. 281–291). Prague, Czech Republic: Charles University.Google Scholar
  50. Krainer, K. (2003). Teams, communities and networks. Journal of Mathematics Teacher Education, 6, 93–105.CrossRefGoogle Scholar
  51. Krainer, K. (2008). Individuals, teams, communities and networks: Participants and ways of participation in mathematics teacher education. In K. Krainer & T. Wood (Eds.), International handbook of mathematics teacher education: Vol. 3, Participants in mathematics teacher education: Individuals, teams, communities and networks (pp. 1–10). Rotterdam, The Netherlands: Sense Publishers.Google Scholar
  52. Krainer, K. (2015) Reflection on the increasing relevance of large-scale professional development. ZDM Mathematics Education, 47(1). doi: 10.1007/s11858-015-0674-7 (this issue).
  53. Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., & Neubrand, M. (2013). Cognitive activation in the mathematics classroom and professional competence of teachers. Results from the COACTIV project. New York: Springer.CrossRefGoogle Scholar
  54. Kuzle, A. & Biehler, R. (2015). Examining mathematics mentor teachers’ practices in professional development courses on teaching data analysis: implications for mentor teachers’ programs. ZDM Mathematics Education, 47(1). doi: 10.1007/s11858-014-0663-2 (this issue).
  55. Li, Y. & Even, R. (Eds.) (2011). Approaches and practices in developing teachers’ expertise in mathematics instruction. ZDMThe International Journal on Mathematics Education, 43(6/7).Google Scholar
  56. Lipowsky, F. (2004). Was macht Fortbildung für Lehrkräfte erfolgreich? Befunde der Forschung und mögliche Konsequenzen für die Praxis. Die deutsche Schule, 96, 462–479.Google Scholar
  57. Lipowsky, F. (2010). Lernen im Beruf – Empirische Befunde zur Wirksamkeit von Lehrerfortbildung. In F. Müller, A. Eichenberger, M. Lüders, & J. Mayr (Eds.), Lehrerinnen und Lehrer lernen – Konzepte und Befunde zur Lehrerfortbildung (pp. 51–72). Münster: Waxmann.Google Scholar
  58. Lipowsky, F. (2011). Theoretische Perspektiven und empirische Befunde zur Wirksamkeit von Lehrerfort- und -weiterbildung. In E. Terhart, H. Bennewitz, & M. Rothland (Eds.), Handbuch der Forschung zum Lehrerberuf (pp. 398–417). Münster: Waxmann.Google Scholar
  59. Llinares, S., & Krainer, K (2006). Professional aspects of teaching mathematics. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of eathematics Education. Past, present and future (pp. 429–459). Rotterdam: Sense Publishers.Google Scholar
  60. Lortie, D. C. (1975). Schoolteacher. Chicago: University of Chicago Press.Google Scholar
  61. Loucks-Horsley, S., Love, N., Stiles, K. E., Mundry, S., & Hewson, P. W. (2003). Designing professional development for teachers of science and mathematics. Thousand Oaks: Corwin Press.Google Scholar
  62. Maaß, K., & Artigue, M. (2013). Implementation of inquiry-based learning in day-to-day teaching: a synthesis. ZDM–The International Journal on Mathematics Education, 45(6), 779–795.CrossRefGoogle Scholar
  63. Marrongelle, K., Sztajn, P., & Smith, M. (2013). Providing professional development at scale: recommendations from research to practice. In A. M. Lindmeier & A. Heinze (Ed.), Proceedings of the 37th conference of the International Group for the Psychology of Mathematics Education “Mathematics learning across the life span” (Vol. 3). Kiel: IPN–Leibniz Institute for Science and Mathematics Education at the University of Kiel.Google Scholar
  64. Messner, H., & Reusser, K. (2000). Berufliches Lernen als lebenslanger Prozess. Beitraege zur Lehrerbildung, 1(3), 277–294. (Retrieved January 20, 2015).
  65. OECD (2009). Creating effective teaching and learning environments. First results from TALIS. Accessed 28 December 28 2014.
  66. Prediger, S., & Link, M. (2012). Fachdidaktische Entwicklungsforschung-Ein lernprozessfokussieren- des Forschungsprogramm mit Verschränkung fachdidaktischer Arbeitsbereiche. In H. Bayrhuber, U. Harms, B. Muszynski, B. Ralle, M. Rothgangel, L.-H. Schön, H. Vollmer & H.-G. Weigand (Eds.), Formate Fachdidaktischer Forschung. Empirische Projektehistorische Analysentheoretische Grundlegungen. Fachdidaktische Forschungen (Band 2, pp. 29–49). Münster: Waxmann.Google Scholar
  67. Roesken, B. (2011). Hidden dimensions in the professional development of mathematics teachers: In-service education for and with teachers. Rotterdam, Boston, Taipei: Sense.CrossRefGoogle Scholar
  68. Roesken, B., Hoechsmann, K., & Toerner, G. (2008). Pedagogies in action: the role of mathematics teachers’ professional routines. Paper presented at the Symposium on the Occasion of the 100th Anniversary of ICMI (Rome, 5–8 March, 2008). Accessed 7 November 2008.
  69. Roesken-Winter, B., & Kramer, J. (2013). Lehrerfortbildungen als berufsbegleitende Erwachsenenbildung: Einfluss von Vorwissen und Auswirkungen auf die Praxis. In G. Greefrath, F. Knäpnick, & M. Stein (Eds.), Beiträge zum Mathematikunterricht (pp. 842–845). Münster: WTM.Google Scholar
  70. Roesken-Winter, B., Schüler, S., Stahnke, R. & Blömeke, S. (2015). Effective CPD on a large scale: examining the development of multipliers. ZDM Mathematics Education, 47(1). doi: 10.1007/s11858-014-0644-5 (this issue).
  71. Rogers, E. (2003). Diffusion of innovations (5th ed.). New York, London: Free Press.Google Scholar
  72. Schmidt, W. H., Blömeke, S. & Tatto, M. T. (2011). Teacher Education Matters. A Study of The Mathematics Teacher Preparation from Six Countries. New York: Teachers‘ College Record.Google Scholar
  73. Schoenfeld, A. H. (2006). Mathematics teaching and learning. In P. A. Alexander & P. H. Winne (Eds.), Handbook of Educational Psychology (2nd ed., pp. 479–510). Mahwah: Erlbaum.Google Scholar
  74. Schoenfeld, A. (2015). Thoughts on scale. ZDM Mathematics Education, 47(1). doi: 10.1007/s11858-014-0662-3 (this issue).
  75. Selter, C., Gräsel, C., Reinold, M. & Trempler, K. (2015). Variations of in-service training for primary mathematics teachers: an empirical study. ZDM Mathematics Education, 47(1). doi: 10.1007/s11858-014-0639-2 (this issue).
  76. Shulman, L. S. (1999). Taking learning seriously. Change, 31(4), 11–17.CrossRefGoogle Scholar
  77. Simon, M. A. (2007). Constraints on what teachers can learn from their practice: teachers’ assimilatory schemes. In J.-H. Woo, H.-C., Lew, K.-S. Park, & D.-Y. Seo (Eds.), Proceedings of the 31st conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 137–141). Seoul: PME.Google Scholar
  78. Slavin, R. (2008). Perspectives on Evidence-Based Research in Education— What Works? Issues in Synthesizing Educational Program Evaluations. Educational Researcher, 37, 5–14.CrossRefGoogle Scholar
  79. Sowder, J. (2007). The mathematical education and development of teachers. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 157–224). Charlotte: Information Age Publishing.Google Scholar
  80. Sparks, D., & Hirsh, S. (1997). A new vision for staff development. Alexandria: Association for Supervision and Curriculum Development and National Staff Development Council.Google Scholar
  81. Sprinthall, N., Reiman, A. J., & Thies-Sprinthall, L. (1996). Teacher professional development. In J. Siluka, T. Buttery, & E. Guyton (Eds.), Handbook of research on teacher education: A project of the association of teacher educators (2nd ed., pp. 666–704). New York: Macmillan.Google Scholar
  82. Stigler, J. W., & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. New York: Free Press.Google Scholar
  83. Tatto, M. T., Schwille, J., Senk, S. L., Ingvarson, L., Rowley, G., Peck, R., et al. (2012). Policy, practice, and readiness to teach primary and secondary mathematics in 17 countries: Findings from the IEA Teacher Education and Development Study in Mathematics (TEDS-M). Amsterdam: IEA.Google Scholar
  84. Timperley, H. (2011). Realizing the Power of Professional Learning. McGraw Hill.Google Scholar
  85. Timperley, H., Wilson, A., Barrar, H., & Fung, I. (2007). Teacher professional learning and development. Best evidence synthesis iteration. Wellington: Ministry of Education.Google Scholar
  86. Tirosh, D., Tsamir, P., & Levenson, E. (2015). Fundamental issues concerning the sustainment and scaling up of professional development programs. ZDM Mathematics Education, 47(1). doi: 10.1007/s11858-015-0665-8 (this issue).
  87. Tulodziecki, G., Grafe, S., & Herzig, B. (2013). Ansatz einer handlungs- und entwicklungsorientierten Didaktik. Theoretische Grundlagen, empirische Bezüge und praktische Relevanz. Jahrbuch für Allgemeine Didaktik 2013. Thementeil Neuere Ansätze in der Allgemeinen Didaktik, 181–195.Google Scholar
  88. Van den Akker, J., Gravemeijer, K., McKenney, S., & Nieveen, N. (Eds.). (2006). Educational Design Research. New York: Routledge.Google Scholar
  89. Van Driel, J. H., Meirink, J. A., van Veen, K., & Zwart, R. C. (2012). Current trends and missing links in studies on teacher professional development in science education: a review of design features and quality of research. Studies in Science Education, 48(2), 129–160.CrossRefGoogle Scholar
  90. Vescio, V., Ross, D. & Adams, A. (2008). A review of research on the impact of professional learning communities on teaching practice and student leaming. Teaching and Teacher Education, 24(1), 80–91.Google Scholar
  91. Weißenrieder, J., Rösken-Winter, B., Schüler, S., Binner, E. & Blömeke, S. (2015). Scaling CPD through professional learning communities: Development of teachers’ self-efficacy in relation to collaboration. ZDM Mathematics Education, 47(1). doi: 10.1007/s11858-015-0673-8 (this issue).
  92. Wilson, S. M., & Berne, J. (1999). Teacher learning and the acquisition of professional knowledge: an examination of research on contemporary professional development. Review of Research in Education, 24(1), 173–209.CrossRefGoogle Scholar
  93. Yoon, K. S., Duncan, T., Lee, S. W.-Y., Scarloss, B. & Shapley, K. L. (2007). Reviewing the evidence on how teacher professional development affects student achievement (Issues & Answers Report, REL 2007–No. 033). Washington, DC: US Department of Education.Google Scholar
  94. Zehetmeier, S. (2010). The sustainability of professional development. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth Congress of the European Society for Research in Mathematics Education (pp. 1951–1960). Lyon: Institut national de recherche pédagogique (INRP).Google Scholar
  95. Zehetmeier, S. (2015). Sustaining and scaling up the impact of professional development programmes. ZDM Mathematics Education, 47(1). doi: 10.1007/s11858-015-0671-x (this issue).
  96. Zehetmeier, S., & Krainer, K. (2011). Ways of promoting the sustainability of mathematics teachers’ professional development. ZDM–The International Journal on Mathematics Education, 43(6/7), 875–887.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2015

Authors and Affiliations

  • Bettina Roesken-Winter
    • 1
    • 2
    • 3
    Email author
  • Celia Hoyles
    • 1
    • 2
    • 3
  • Sigrid Blömeke
    • 1
    • 2
    • 3
  1. 1.Humboldt-Universität zu BerlinBerlinGermany
  2. 2.University of LondonLondonUK
  3. 3.University of OsloOsloNorway

Personalised recommendations