Advertisement

ZDM

, Volume 47, Issue 1, pp 39–51 | Cite as

Examining mathematics mentor teachers’ practices in professional development courses on teaching data analysis: implications for mentor teachers’ programs

  • Ana KuzleEmail author
  • Rolf Biehler
Original Article

Abstract

In this paper, we report on the training practices of 12 mathematics mentor teachers who developed and implemented five short professional development courses after participating in a 5-month continuous professional development course “Competence-oriented teaching and learning of data analysis.” The intention of this course was to deepen their professional knowledge of teaching statistics using digital tools, and to develop their competences and knowledge for developing and implementing their own professional development courses in statistics. Here, we explore how the professional program itself is reflected in the short courses they designed and implemented. Although the sample is very small, the cases allow for interesting insights into their training practices and challenges that seem to have a major impact on the quality of their professional development courses. On this basis we offer suggestions for how continuous professional development courses for mathematics mentor teachers might be designed to support their diverse needs in the professional development system.

Keywords

Professional Development Content Knowledge Mathematics Teacher Pedagogical Content Knowledge Professional Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

11858_2014_663_MOESM1_ESM.docx (59 kb)
Supplementary material 1 (DOCX 59 kb)

References

  1. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: what makes it special? Journal of Teacher Education, 59(5), 389–407.CrossRefGoogle Scholar
  2. Batanero, C., Burrill, G., & Reading, C. (Eds.). (2011). Teaching statistics in school mathematics: Challenges for teaching and teacher education. New York: Springer.Google Scholar
  3. Biehler, R., Ben-Zvi, D., Bakker, A., & Makar, K. (2013a). Technology for enhancing statistical reasoning at the school level. In M. A. Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Third international handbook of mathematics education (Vol. 27, pp. 643–689). New York: Springer.Google Scholar
  4. Biehler, R., Hofmann, T., Maxara, C., & Prömmel, A. (2011). Daten und Zufall mit Fathom. Unterrichtsideen für die SI und SII mit Software-Einführung. Braunschweig: Schroedel.Google Scholar
  5. Biehler, R., Kuzle, A., Oesterhaus, J., & Wassong, T. (2013b). Stochastikfortbildner fortbilden: ein projektorientiertes Konzept zur Multiplikatorenqualifikation. In G. Greefrath, F. Käpnick, & M. Stein (Eds.), Beiträge zum Mathematikunterricht 2013 (Vol. 1, pp. 148–151). Münster: WTM-Verlag.Google Scholar
  6. Biehler, R., Kuzle, A., & Wassong, T. (submitted). Professional development of mathematics mentor teachers for improving the quality of teacher training in statistics: challenges of promoting CPD on a large scale. Journal für Mathematik-Didaktik Google Scholar
  7. Borko, H., Koellner, K., Jacobs, J., & Seago, N. (2011). Using video representations of teaching in practice-based professional development programs. ZDM—The International Journal on Mathematics Education, 43, 175–187.CrossRefGoogle Scholar
  8. Burrill, G., & Biehler, R. (2011). Fundamental statistical ideas in the school curriculum and in training teachers. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics: challenges for teaching and teacher education—A joint ICMI/IASE study: The 18th ICMI study (Vol. 14, pp. 57–69). Dordrecht: Springer.CrossRefGoogle Scholar
  9. Clarke, D. M. (1994). Ten key principles from research for the professional development of mathematics teachers. In D. B. Aichele & A. F. Croxford (Eds.), Professional development for teachers of mathematics (pp. 37–48). Reston: NCTM.Google Scholar
  10. Cochran-Smith, M., & Lytle, S. L. (1999). Relationships of knowledge and practice: Teacher learning communities. Review of Research in Education, 24, 249–305.Google Scholar
  11. Darling-Hammond, L., Wei, R. C., Andree, A., Richardson, N., & Orphanos, S. (2009). Professional learning in the learning profession: A status report on teacher development in the United States and abroad. Dallas: National Staff Development Council.Google Scholar
  12. Desimone, L. M. (2011). Improving impact studies of teachers’ professional development: Toward better conceptualizations and measures. Educational Researcher, 38(3), 81–99.Google Scholar
  13. DZLM (2013). Theoretischer Rahmen des Deutschen Zentrums für Lehrerbildung Mathematik. http://www.dzlm.de/files/uploads/DZLM_Theorierahmen.pdf. Accessed 23 December 2014.
  14. Elliot, R., Kazemi, E., Lesseig, K., Mumme, J., Carroll, C., & Kelley-Petersen, M. (2009). Conceptualizing the work of leading mathematical tasks in professional development. Journal of Teacher Education, 60, 364–379.CrossRefGoogle Scholar
  15. Fullan, M. G. (1995). The limits and the potential of professional development. In T. Guskey & M. Huberman (Eds.), Professional development in education: New paradigm and practices (pp. 253–267). New York: Teachers College Press.Google Scholar
  16. Garet, M. S., Porter, A. C., Desimone, L., Birman, B. F., & Yoon, K. S. (2001). What makes professional development effective? Results from a national sample of teachers. American Educational Research Association, 38(4), 915–945.CrossRefGoogle Scholar
  17. Garfield, J., delMas, R., & Zieffler, A. (2012). Developing statistical modelers and thinkers in an introductory, tertiary-level statistics course. ZDM—The International Journal on Mathematics Education, 44(4), 883–898.CrossRefGoogle Scholar
  18. Guskey, T. R. (2002). Does it make a difference? Evaluating professional development. Educational Leadership, 59(6), 45–51.Google Scholar
  19. Ingvarson, L., Meiers, M., & Beavis, A. (2005). Factors affecting the impact of professional development programs on teachers’ knowledge, practice, student outcomes and efficacy. Education Policy Analysis Archives, 13(10), 1–28.Google Scholar
  20. Jackson, K., Cobb, P., Wilson, J., Webster, M., Dunlap, C., & Applegate, M. (2015). Investigating the development of mathematics leaders’ capacity to support teachers’ learning on a large scale. ZDM Mathematics Education, 47(1) (this issue). doi: 10.1007/s11858-014-0652-5.
  21. Koehler, M. J., & Mishra, P. (2005). What happens when teachers design educational technology? The development of technological pedagogical content knowledge. Journal of Educational Computing Research, 32(2), 131–152.CrossRefGoogle Scholar
  22. Kramer, J., & Lange, T. (2014). Das Deutsche Zentrum für Lehrerbildung Mathematik (DZLM). In T. Wassong, D. Frischemeier, P. Fischer, R. Hochmuth, & P. Bender (Eds.), Mit Werkzeugen Mathematik und Stochastik lernen (pp. 487–497). Wiesbaden: Springer Spectrum.CrossRefGoogle Scholar
  23. Kultusministerkonferenz (2003). Bildungsstandards im Fach Mathematik für den mittleren Schulabschluss. Bonn: KMK.Google Scholar
  24. Kuzle, A., & Biehler, R. (2014). Wie „multiplizieren“Mathematikmultiplikatoren in ihren selbst gestalteten Lehrerfortbildungsmaßnahmen? In J. Roth & J. Ames (Eds.), Beiträge zum Mathematikunterricht 2014 (Vol. 1, pp. 687–690). Münster: WTM-Verlag.Google Scholar
  25. Kuzle, A., Biehler, R., Oesterhaus, J., & Wassong, T. (2013). Praxisorientierte Fortbildungsdidaktik am Beispiel der Planung und Durchführung einer Stochastikfortbildung. In G. Greefrath, F. Käpnick, & M. Stein (Eds.), Beiträge zum Mathematikunterricht 2013 (Vol. 2, pp. 584–587). Münster: WTM-Verlag.Google Scholar
  26. Lieberman, A., & Pointer-Mace, D. (2008). Teacher learning: The key to education reform. Journal of Teacher Education, 59(3), 226–234.CrossRefGoogle Scholar
  27. Lipowsky, F. (2004). Was macht Fortbildungen für Lehrkräfte erfolgreich? Die Deutsche Schule, 96(4), 462–479.Google Scholar
  28. Lipowsky, F. (2011). Theoretische Perspektiven und empirische Befunde zur Wirksamkeit von Lehrerfort- und -weiterbildung. In E. Terhart, H. Bennewitz, & M. Rothland (Eds.), Handbuch der Forschung zum Lehrerberuf (pp. 398–417). Münster: Waxmann.Google Scholar
  29. Lipowsky, F., & Rzejak, D. (2012). Lehrerinnen und Lehrer als Lerner—Wann gelingt der Rollentausch? Schulpädagogik heute, 5(3), 1–17.Google Scholar
  30. Loucks-Horsley, S., Love, N., Stiles, K. E., Mundry, S., & Hewson, P. W. (2003). Designing professional development for teachers of science and mathematics. Thousand Oaks: Corwin Press.Google Scholar
  31. Maaß, K., & Doorman, M. (2013). A model for a widespread implementation of inquiry based learning. ZDM—The International Journal on Mathematics Education, 45(6), 887–899.CrossRefGoogle Scholar
  32. Miles, M. B., & Huberman, M. (1994). Qualitative data analysis: A sourcebook of new methods. Beverly Hills: Sage.Google Scholar
  33. Müller, U. (2003). Weiterbildung der Weiterbildner. Hamburg: Dr. Kovac.Google Scholar
  34. Niess, M. L. (2005). Preparing teachers to teach science and mathematics with technology: Developing a technology pedagogical content knowledge. Teaching and Teacher Education, 21(5), 509–523.CrossRefGoogle Scholar
  35. Putnam, R. T., & Borko, H. (2000). What do new views of knowledge and thinking have to say about research on teacher learning? Educational Researcher, 29(1), 4–15.CrossRefGoogle Scholar
  36. Rösken-Winter, B., Schüler, S., Stanke, R., & Blömeke, S. (2015). Effective CPD on a large scale: examining the development of multipliers. ZDM Mathematics Education 47(1) (this issue). doi: 10.1007/s11858-014-0644-5.
  37. Shulman, L. S. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4–31.CrossRefGoogle Scholar
  38. Timperley, H. S. (2011). Realizing the power of professional learning. London: Open University Press.Google Scholar
  39. Wahl, D., Wölfing, W., Rapp, G., & Heger, D. (1991). Erwachsenenbildung konkret—Mehrphasiges Dozententraining. Weinheim: Beltz.Google Scholar
  40. Wassong, T., & Biehler, R. (2010). A model for teacher knowledge as a basis for online courses for professional development of statistics teachers. In C. Reading (Ed.), Data and context in statistics education: Towards an evidence-based society. Proceedings of the eighth international conference on teaching of statistics (pp. 41–46). Voorburg: IASE. http://icots.net/8/cd/pdfs/invited/ICOTS8_3C1_WASSONG.pdf. Accessed 23 December 2014.
  41. Zehetmeier, S., & Krainer, K. (2011). Ways of promoting the sustainability of mathematics teachers’ professional development. ZDM—The International Journal on Mathematics Education, 43(6–7), 875–887.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2015

Authors and Affiliations

  1. 1.University of PaderbornPaderbornGermany
  2. 2.University of OsnabrückOsnabrückGermany

Personalised recommendations