, Volume 47, Issue 5, pp 723–734 | Cite as

Increasing cognitive inhibition with a difficult prior task: implications for mathematical thinking

  • Nina AttridgeEmail author
  • Matthew Inglis
Original Article


Dual-process theories posit two distinct types of cognitive processing: Type 1, which does not use working memory making it fast and automatic, and Type 2, which does use working memory making it slow and effortful. Mathematics often relies on the inhibition of pervasive Type 1 processing to apply new skills or knowledge that require Type 2 processing. In two studies, we demonstrate that giving participants a difficult task (Raven’s Matrices) before a task that requires the inhibition of intuitive responses (the Cognitive Reflection Test) significantly improves performance. Our findings suggest that encountering a difficult task that requires Type 2 processing before completing a task that requires inhibition of Type 1 processing may encourage an enduring ‘Type 2’ mindset, whereby participants are more likely to spontaneously use Type 2 processing for a period of time. Implications for mathematics education are discussed.


Mathematical Thinking Perceptual Fluency Intuitive Response Reflective Level Thinking Disposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alter, A. L., & Oppenheimer, D. M. (2006). Predicting short-term stock fluctuations by using processing fluency. Proceedings of the National Academy of Sciences, 103(24), 9369–9372.CrossRefGoogle Scholar
  2. Alter, A. L., Oppenheimer, D. M., Epley, N., & Eyre, R. N. (2007). Overcoming intuition: Metacognitive difficulty activates analytic reasoning. Journal of Experimental Psychology: General, 136(4), 569.CrossRefGoogle Scholar
  3. Attridge, N., & Inglis, M. (2013). Advanced mathematical study and the development of conditional reasoning skills. PLOS ONE, 8(7), e69399.Google Scholar
  4. Babai, R., Shalev, E., & Stavy, B. (2015). A warning intervention improves students’ ability to overcome intuitive interference. ZDMThe International Journal on Mathematics Education, 47(5), (this issue).Google Scholar
  5. Birnbaum, M. H. (2004). Human research and data collection via the Internet. Annual Review of Psychology, 55, 803–832.CrossRefGoogle Scholar
  6. Bornemann, B., Foth, M., Horn, J., Ries, J., Warmuth, E., Wartenburger, I., & van der Meer, E. (2010). Mathematical cognition: Individual differences in resource allocation. ZDMThe International Journal on Mathematics Education42(6), 555–567.Google Scholar
  7. Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s Mechanical Turk a new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science, 6(1), 3–5.CrossRefGoogle Scholar
  8. Chernoff, E. J. (2012). Recognizing revisitation of the representativeness heuristic: An analysis of answer key attributes. ZDMThe International Journal on Mathematics Education44(7), 941–952.Google Scholar
  9. Christou, K. P. (2015). Natural number bias in operations with missing numbers. ZDMThe International Journal on Mathematics Education, 47(5), (this issue).Google Scholar
  10. Clement, J., Lockhead, J., & Monk, G. (1981). Translation difficulties in learning mathematics. American Mathematics Monthly, 88, 286–290.CrossRefGoogle Scholar
  11. Cramer, K., Post, T., & Currier, S. (1993). Learning and teaching ratio and proportion: Research implications. In D. Owens (Ed.), Research ideas for the classroom (pp. 159–178). New York: Macmillan Publishing Company.Google Scholar
  12. De Neys, W., Vartanian, O., & Goel, V. (2008). Smarter than we think: When our brains detect that we are biased. Psychological Science, 19(5), 483–489.CrossRefGoogle Scholar
  13. Evans, J. S. B. (2003). In two minds: Dual-process accounts of reasoning. Trends in Cognitive Sciences, 7(10), 454–459.CrossRefGoogle Scholar
  14. Evans, J. S. B. (2006). The heuristic-analytic theory of reasoning: Extension and evaluation. Psychonomic Bulletin and Review, 13, 378–395.CrossRefGoogle Scholar
  15. Evans, J. S. B., Handley, S. J., & Bacon, A. M. (2009). Reasoning Under Time Pressure. Experimental Psychology (formerly Zeitschrift für Experimentelle Psychologie), 56(2), 77–83.CrossRefGoogle Scholar
  16. Evans, J. S. B., Newstead, S. E., & Byrne, R. M. (Eds.). (1993). Human reasoning: The psychology of deduction. Hove: Psychology Press.Google Scholar
  17. Evans, J. S. B., & Stanovich, K. E. (2013). Dual-process theories of higher cognition: Advancing the debate. Perspectives on Psychological Science, 8(3), 223–241.CrossRefGoogle Scholar
  18. Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic Perspectives, 19, 25–42.Google Scholar
  19. Friese, M., Wänke, M., & Plessner, H. (2006). Implicit consumer preferences and their influence on product choice. Psychology and Marketing, 23(9), 727–740.CrossRefGoogle Scholar
  20. Gillard, E., Van Dooren, W., Schaeken, W., & Verschaffel, L. (2009a). Dual processes in the psychology of mathematics education and cognitive psychology. Human Development, 52(2), 95–108.CrossRefGoogle Scholar
  21. Gillard, E., Van Dooren, W., Schaeken, W., & Verschaffel, L. (2009b). Proportional reasoning as a heuristic-based process: Time constraint and dual task considerations. Experimental Psychology, 56(2), 92.CrossRefGoogle Scholar
  22. Gillard, E., Van Dooren, W., Schaeken, W., & Verschaffel, L. (2009c). Processing time evidence for a default-interventionist model of probability judgments. In Proceedings of the 31st annual conference of the cognitive science society (pp. 1792–1797). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  23. Gómez-Chacón, I. M., García-Madruga, J. A., Vila, J. Ó., Elosúa, M. R., & Rodríguez, R. (2014). The dual processes hypothesis in mathematics performance: Beliefs, cognitive reflection, working memory and reasoning. Learning and Individual Differences, 29, 67–73.CrossRefGoogle Scholar
  24. Gosling, S. D., Vazire, S., Srivastava, S., & John, O. P. (2004). Should we trust web-based studies? A comparative analysis of six preconceptions about internet questionnaires. American Psychologist, 59(2), 93.Google Scholar
  25. Hammond, D. (2011). Health warning messages on tobacco products: A review. Tobacco Control, 20(5), 327–337.CrossRefGoogle Scholar
  26. Hecht, H., Oesker, M., Kaiser, A., Civelek, H., & Stecker, T. (1999). A perception experiment with time-critical graphics animation on the World-Wide Web. Behavior Research Methods, Instruments, and Computers, 31(3), 439–445.CrossRefGoogle Scholar
  27. Houdé, O., Zago, L., Mellet, E., Moutier, S., Pineau, A., Mazoyer, B., & Tzourio-Mazoyer, N. (2000). Shifting from the perceptual brain to the logical brain: The neural impact of cognitive inhibition training. Journal of Cognitive Neuroscience, 12(5), 721–728.CrossRefGoogle Scholar
  28. Janiszewski, C., & Meyvis, T. (2001). Effects of brand logo complexity, repetition, and spacing on processing fluency and judgment. Journal of Consumer Research, 28(1), 18–32.CrossRefGoogle Scholar
  29. Krantz, J. H., & Dalal, R. (2000). Validity of Web-based psychological research. In M. H. Birnbaum (Ed.), Psychological experiments on the Internet (pp. 35–60). San Diego: Academic Press.CrossRefGoogle Scholar
  30. Lem, S. (2015). The intuitiveness of the law of large numbers. ZDMThe International Journal on Mathematics Education, 47(5), (this issue).Google Scholar
  31. Lem, S., Onghena, P., Verschaffel, L., & Van Dooren, W. (2013). The heuristic interpretation of box plots. Learning and Instruction, 26, 22–35.CrossRefGoogle Scholar
  32. Leron, U. (2010). The power of natural thinking: Applications of cognitive psychology to mathematics education. In Proceedings of the 32nd annual meeting of the North American chapter of the international group for the psychology of mathematics education (Vol. 6, pp. 9–20). Columbus: Ohio State University.Google Scholar
  33. Leron, U., & Hazzan, O. (2006). The rationality debate: Application of cognitive psychology to mathematics education. Educational Studies in Mathematics, 62(2), 105–126.CrossRefGoogle Scholar
  34. Lubin, A., Simon, G., Houdé, O., & De Neys, W. (2015). Inhibition, conflict detection and number conservation. ZDMThe International Journal on Mathematics Education, 47(5), (this issue).Google Scholar
  35. Mason, W., & Watts, D. J. (2010). Financial incentives and the performance of crowds. ACM SigKDD Explorations Newsletter, 11(2), 100–108.CrossRefGoogle Scholar
  36. Obersteiner, A., Van Dooren, W., Van Hoof, J., & Verschaffel, L. (2013). The natural number bias and magnitude representation in fraction comparison by expert mathematicians. Learning and Instruction, 28, 64–72.CrossRefGoogle Scholar
  37. Oppenheimer, D. M. (2008). The secret life of fluency. Trends in Cognitive Sciences, 12(6), 237–241.CrossRefGoogle Scholar
  38. Paolacci, G., Chandler, J., & Ipeirotis, P. G. (2010). Running experiments on Amazon Mechanical Turk. Judgment and Decision Making, 5(5), 411–419.Google Scholar
  39. Piper, A. I. (1998). Conducting social science laboratory experiments on the World Wide Web. Library and Information Science Research, 20, 5–21.CrossRefGoogle Scholar
  40. Pontin, J. (2007, March 25). Artificial intelligence: With help from the humans. The New York Times. Accessed 10 April 2014.
  41. Raven, J., Raven, J. C., & Court, J. H. (1998). Manual for Raven’s advanced progressive matrices and vocabulary scales. San Antonio: Pearson.Google Scholar
  42. Reips, U. D. (2000). The Web experiment method: Advantages, disadvantages, and solutions. In M. H. Birnbaum (Ed.), Psychological experiments on the Internet (pp. 89–117). San Diego: Academic Press.CrossRefGoogle Scholar
  43. Reips, U. D., & Neuhaus, C. (2002). WEXTOR: A Web-based tool for generating and visualizing experimental designs and procedures. Behavior Research Methods, Instruments, and Computers, 34(2), 234–240.CrossRefGoogle Scholar
  44. Sá, W. C., West, R. F., & Stanovich, K. E. (1999). The domain specificity and generality of belief bias: Searching for a generalizable critical thinking skill. Journal of Educational Psychology, 91(3), 497–510.CrossRefGoogle Scholar
  45. Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime (Version 2.0). Computer software and manual. Pittsburgh: Psychology Software Tools Inc.Google Scholar
  46. Sloman, S. A. (1996). The empirical case for two systems of reasoning. Psychological Bulletin, 119, 3–22.CrossRefGoogle Scholar
  47. Stanovich, K. E. (2009). Distinguishing the reflective, algorithmic, and autonomous minds: Is it time for a tri-process theory? In Two minds: Dual processes and beyond (pp. 55–88).Google Scholar
  48. Stavy, R., & Babai, R. (2010). Overcoming intuitive interference in mathematics: Insights from behavioral, brain imaging and intervention studies. ZDMThe International Journal on Mathematics Education42(6), 621–633.Google Scholar
  49. Stavy, R., & Tirosh, D. (1996). Intuitive rules in science and mathematics: the case of ‘more of A — more of B’. International Journal of Science Education, 18(6), 653–667.CrossRefGoogle Scholar
  50. Suri, S., Goldstein, D. G., & Mason, W. A. (2011, August). Honesty in an Online Labor Market. In Human computation: Papers from the 2011 AAAI Workshop (WS-11-11). Google Scholar
  51. Thompson, V. A. (2009). Dual process theories: A metacognitive perspective. In Two minds: Dual processes and beyond. Oxford: Oxford University Press.Google Scholar
  52. Thompson, V. A., Prowse Turner, J. A., & Pennycook, G. (2011). Intuition, reason, and metacognition. Cognitive Psychology, 63(3), 107–140.CrossRefGoogle Scholar
  53. Thompson, V. A., Turner, J. A. P., Pennycook, G., Ball, L. J., Brack, H., Ophir, Y., & Ackerman, R. (2013). The role of answer fluency and perceptual fluency as metacognitive cues for initiating analytic thinking. Cognition, 128(2), 237–251.CrossRefGoogle Scholar
  54. Tirosh, D., Stavy, R., & Cohen, S. (1998). Cognitive conflict and intuitive rules. International Journal of Science Education, 20(10), 1257–1269.CrossRefGoogle Scholar
  55. Vamvakoussi, X., Van Dooren, W., & Verschaffel, L. (2012). Naturally biased? In search for reaction time evidence for a natural number bias in adults. The Journal of Mathematical Behavior, 31(3), 344–355.CrossRefGoogle Scholar
  56. Van Dooren, W., De Bock, D., Hessels, A., Janssens, D., & Verschaffel, L. (2005). Not everything is proportional: Effects of age and problem type on propensities for overgeneralization. Cognition and Instruction, 23(1), 57–86.CrossRefGoogle Scholar
  57. Van Hoof, J., Janssen, R., Verschaffel, L., & Van Dooren, W. (2015). Inhibiting natural knowledge in fourth graders: Towards a comprehensive test instrument. ZDMThe International Journal on Mathematics Education, 47(5), (this issue).Google Scholar
  58. Van Hoof, J., Lijnen, T., Verschaffel, L., & Van Dooren, W. (2013). Are secondary school students still hampered by the natural number bias? A reaction time study on fraction comparison tasks. Research in Mathematics Education, 15(2), 154–164.CrossRefGoogle Scholar
  59. Wason, P. C. (1968). Reasoning about a rule. The Quarterly Journal of Experimental Psychology, 20(3), 273–281.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2014

Authors and Affiliations

  1. 1.Centre for Pain ResearchUniversity of BathBathUK
  2. 2.Mathematics Education CentreLoughborough UniversityLoughboroughUK

Personalised recommendations