, Volume 47, Issue 1, pp 53–64 | Cite as

Promoting secondary teachers’ diagnostic competence with respect to functions: development of a scalable unit in Continuous Professional Development

  • Julia BuschEmail author
  • Bärbel Barzel
  • Timo Leuders
Original Article


Diagnosing student achievement in a formative way is a crucial skill for planning and carrying out effective mathematics lessons. This study takes a subject-specific view and aims at investigating diagnostic competence in the field of mathematical functions at secondary level and how to improve it. Following three evidence-based design principles, a Continuous Professional Development (CPD) unit has been designed for a statewide official in-service teacher program of the Ministry for Education in Baden-Württemberg, Germany. The workshops of this CPD unit are presented in this paper and were investigated in a first pilot study (N = 26). To this end, we qualitatively analyzed the participants’ diagnostic competence before and after the training. We can report different diagnostic profiles of teachers that contain increased application of pedagogical content knowledge through the training in the field of functions. A number of teachers carried out increasingly profound diagnostic judgments after the training and shifted from a corrective to a descriptive or analytical view on student achievement. We furthermore report on steps to implement the unit on a statewide scale as part of a facilitators’ training and adjustments of the training’s content and methods based on our results of the pilot study.


CPD Scalability Diagnostic competence Function Diagnostic profiles 



The research reported in this paper was supported by the Graduate School Pro|Mat|Nat (Educational Professionalism in Mathematics and Natural Sciences). Pro|Mat|Nat is a project of the Competence Network Empirical Research in Education and Teaching (KeBU) of the University of Freiburg and the University of Education, Freiburg. The Graduate School is funded by the state of Baden-Württemberg, Germany.


  1. Ball, D. L., Lubienski, S., & Mewborn, D. (2001). Research on teaching mathematics: the unsolved problem of teachers’ mathematical knowledge. In V. Richardson (Ed.), Handbook of research on teaching (4th ed.). New York: Macmillan.Google Scholar
  2. Barzel, B., & Ganter, S. (2010). Experimentell zum Funktionsbegriff. PM Praxis Mathematik, 52(31), 14–19.Google Scholar
  3. Barzel, B., & Selter, C. (2014). Die DZLM-Gestaltungsprinzipien für Fortbildungen—Review der Forschungslage und konkretisierende Beispiele. JMD: Special Issue. Lehrerfortbildung/Multiplikatoren MathematikKonzepte und Wirkungsforschung, 2.Google Scholar
  4. Baumert, J. (2009). Professionswissen von Lehrkräften, kognitiv aktivierender Mathematikunterricht und die Entwicklung von mathematischer Kompetenz (COACTIV). Dokumentation der Erhebungsinstrumente (p. 83). Berlin: Max-Planck-Institut für Bildungsforschung (Materialien aus der Bildungsforschung.Google Scholar
  5. Black, P. J., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy and Practice, 5(1), 7–73.CrossRefGoogle Scholar
  6. Blömeke, S. (2013). Theoretischer Rahmen des Deutschen Zentrums für Lehrerbildung Mathematik. Deutsches Zentrum für Lehrerbildung Mathematik. Accessed 15 Oct 2014.
  7. Bonsen, M., & Hübner, C. (2012). Unterrichtsentwicklung in Professionellen Lerngemeinschaften. In K.-O. Bauer & N. Logemann (Eds.), Effektive Bildung (pp. 55–76). Münster: Waxmann.Google Scholar
  8. Borko, H. (2004). Professional development and teacher learning. Mapping the terrain. Educational Researcher, 33(8). Accessed 18 Oct 2014.
  9. Borko, H., Jacobs, J., Eiteljorg, E., & Pittman, M. E. (2008). Video as a tool for fostering productive discussions in mathematics professional development. Teacher and Teacher Education, 24, 417–436.CrossRefGoogle Scholar
  10. Boyle, B., Lamprianou, I., & Boyle, T. (2005). A longitudinal study of teacher change: what makes professional development effective? Report of the second year of the study. School Effectiveness and School Improvement, 16(1), 1–27.CrossRefGoogle Scholar
  11. Buchholtz, N., Scheiner, T., Döhrmann, M., Suhl, U., Kaiser, G., & Blömeke, S. (2012). TEDS-shortM. Teacher education and development studyshort test on mathematics content knowledge (MCK) and mathematics pedagogical content knowledge (MPCK). Hamburg: Universität Hamburg.Google Scholar
  12. Busch, J., Barzel, B., & Leuders, T. (2015). Die Entwicklung eines kategorialen Kompetenzmodells zur Erfassung diagnostischer Kompetenzen von Lehrkräften im Bereich Funktionen. JMD Special Issue: Lehrerfortbildung/Multiplikatoren MathematikKonzepte und Wirkungsforschung, 2. Google Scholar
  13. Clark-Wilson, A., Hoyles, C., Noss, R., Vahey, P., & Roschelle, J. (2015). Scaling a technology-based innovation: windows on the evolution of mathematics teachers’ practices. ZDM - The International Journal on Mathematics Education, 47(1) (this issue). doi: 10.1007/s11858-014-0635-6.
  14. Cochran-Smith, M., & Lytle, S. L. (1999). Relationships of knowledge and practice: teacher learning in communities. Review of Research in Education, 24(1), 249–305.CrossRefGoogle Scholar
  15. Cullen, J., & Shaw, S. (2000). The accuracy of teacher prediction of student test performance for students referred for special education. C.d.a.g. Education (Ed.) (Vol. 41). Connecticut.Google Scholar
  16. Demaray, M. K., & Elliott, S. N. (1998). Teachers’ judgments of students’ academic functioning a comparison of actual and predicted performances. School Psychology Quarterly, 13, 8–24.CrossRefGoogle Scholar
  17. DeMarois, P., & Tall, D. O. (1996). Facets and layers of the function concept. Proceedings of PME 20, Valencia, 2, 297–304.Google Scholar
  18. Duval, R. (2002). The cognitive analysis of problems of comprehension in the learning of mathematics. Mediterranean Journal for Research in Mathematics Education, 1(2), 1–16.Google Scholar
  19. Flick, U. (2011). Qualitative Sozialforschung. Eine Einführung. Reinbeck bei Hamburg: Rowohlt Taschenbuch Verlag.Google Scholar
  20. Franke, M. L., Carpenter, T. P., Levi, L., & Fennema, E. (2001). Capturing teachers’ generative change: a follow-up study of professional development in mathematics. American Educational Research Journal, 38(3), 653–689.CrossRefGoogle Scholar
  21. Fredebohm, A., Bruder, R., Leuders, T., & Wirtz, M. (2011). Empiriegestützte Itementwicklung für die Kompetenzmodellierung des Arbeitens mit algebraischen Repräsentationen von funktionalen Zusammenhängen. In Beiträge zum Mathematikunterricht 2011 (pp. 267–270). Dortmund: WTM-Verlag.Google Scholar
  22. Fuller, M. L. (2000). Teacher judgment as formative and predictive assessment of student performance on Ohio’s fourth and sixth grade proficiency tests. Paper presented at the Annual Meeting of the American Educational Research Association (New Orleans, LA, April 24–28, 2000). Resource document. Accessed 15 Oct 2014.
  23. Garet, M. S., Cronen, S., Eaton, M., Kurki, A., Ludwig, M., & Jones, W. (2008). The impact of two professional development interventions on early reading instruction and achievement. Washington, D. C.: US Department of Education, National Center for Education Statistics.Google Scholar
  24. Glaser, B. G., & Strauss, A. L. (1998). Grounded theory. Strategien qualitativer Forschung. Bern: Huber.Google Scholar
  25. Hadjidemetriou, C., & Williams, J. (2002). Children’s graphical conceptions. Research in Mathematics Education, 4(1), 69–87.CrossRefGoogle Scholar
  26. Hargreaves, E. (2013). Assessment for learning and teacher learning communities: UK teachers’ experiences. Teaching Education, 24(3), 327–344.CrossRefGoogle Scholar
  27. Helmke, A. (2012). Unterrichtsqualität und Lehrerprofessionalität. Diagnose, Evaluation und Verbesserung des Unterrichts. Schule weiterentwickeln—Unterricht verbessern. Orientierungsband, 4. überarb. Aufl. Seelze: Klett-Kallmeyer.Google Scholar
  28. Helmke, A., Hosenfeld, I., & Schrader, F.-W. (2004). Vergleichsarbeiten als Instrument zur Verbesserung der Diagnosekompetenz von Lehrkräften. In R. Arnold & C. Griese (Eds.), Schulleitung und Schulentwicklung (pp. 119–143). Hohengehren: Schneider.Google Scholar
  29. Hill, H. C., Loewenberg Ball, D., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: conceptualizing and measuring teachers’ topic-specific knowledge of students. Journal for Research in Mathematics Education, 38(4), 372–400.Google Scholar
  30. Jackson, F., Cobb, P., Wilson, J., Webster, M., Dunlap, C., & Appelgate, M.   (2015). Investigating the development of mathematics leaders’ capacity to support teachers’ learning on a large scale. ZDM - The International Journal on Mathematics Education, 47(1) (this issue).Google Scholar
  31. Kaur, B. (2015). What matters? From a small scale to a school-wide intervention. ZDM - The International Journal on Mathematics Education, 47(1) (this issue). doi: 10.1007/s11858-014-0645-4.
  32. Kleickmann, T., Richter, D., Kunter, M., Elsner, J., Besser, M., & Krauss, S., (2012). Teachers’ content knowledge and pedagogical content knowledge: the role of structural differences in teacher education. Journal of Teacher Education, 64(1), 90–106.CrossRefGoogle Scholar
  33. Klug, J., Bruder, S., Kelava, A., Spiel, C., & Schmitz, B. (2013). Diagnostic competence of teachers: a process model that accounts for diagnosing learning behavior tested by means of a case scenario. Teaching and Teacher Education, 30, 38–46.CrossRefGoogle Scholar
  34. Koellner, K., Jacobs, J., & Borko, H. (2011). Mathematics professional development: critical features for developing leadership skills and building teachers’ capacity. Mathematics Teacher Education and Development, 13(1), 115–136.Google Scholar
  35. Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: tasks, learning, and teaching. Review of Educational Research, 60(1), 1–64.CrossRefGoogle Scholar
  36. Lipowsky, F. (2006). Auf den Lehrer kommt es an. Empirische Evidenzen für Zusammenhänge zwischen Lehrerkompetenzen, Lehrerhandeln und dem Lernen der Schüler. Zeitschrift für Pädagogik, 51, 47–65.Google Scholar
  37. Lipowsky, F. (2010). Die Wirksamkeit von Lehrer/innenfortbildung. Berufliches Lernen von Lehrerinnen und Lehrern im Rahmen von Weiterbildungsangeboten. news&sciences. Begabtenförderung und Begabungsforschung, 25(2), 4–8.Google Scholar
  38. Lipowsky, F., & Rzejak, D. (2012). Lehrerinnen und Lehrer als Lerner—Wann gelingt der Rollentausch? Merkmale und Wirkungen effektiver Lehrerfortbildungen. Schulpädagogik heute, 5(3), 1–17.Google Scholar
  39. Lomos, C., Hofman, R. H., & Bosker, R. J. (2011). Professional communities and student achievement—a meta-analysis. School Effectiveness and School Improvement, 22(2), 121–148.CrossRefGoogle Scholar
  40. Maaß, K., & Artigue, M. (2013). Implementation of inquiry-based learning in day-to-day teaching: a synthesis. ZDM - The International Journal on Mathematics Education, 45(6), 779–795.CrossRefGoogle Scholar
  41. Malle, G. (2000). Zwei Aspekte von Funktionen: Zuordnung und Kovariation. Mathematik lehren, 103, 8–11.Google Scholar
  42. Praetorius, A.-K., Lipowsky, F., & Karst, K. (2011). Diagnostische Kompetenz von Lehrkräften: Aktueller Forschungsstand, unterrichtspraktische Umsetzbarkeit und Bedeutung für den Unterricht. In A. Ittel & R. Lazarides (Eds.), Differenzierung im mathematisch-naturwissenschaftlichen Unterricht—Implikationen für Theorie und Praxis (pp. 115–146). Bad Heilbrunn: Klinkhardt.Google Scholar
  43. Putnam, R. T., & Borko, H. (2000). What do new views of knowledge and thinking have to say about research on teacher learning? Educational Researcher, 29(1), 4–15.CrossRefGoogle Scholar
  44. Roesken-Winter, B., Schüler, S., Stahnke, R., & Blömeke, S. (2015). Effective CPD on a large scale: examining the development of multipliers. ZDM - The International Journal on Mathematics Education, 47(1) (this issue). doi: 10.1007/s11858-014-0644-5.
  45. Schwarz, B., Wissmach, B., & Kaiser, G. (2008). “Last curves not quite correct”: diagnostic competences of future teachers with regard to modeling and graphical representations. ZDM - The International Journal on Mathematics Education, 40(5), 777–790.CrossRefGoogle Scholar
  46. Shulman, L. S. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4–14.CrossRefGoogle Scholar
  47. Sowder, J. (2007). The mathematical education and development of teachers. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 157–224). Charlotte: Information Age Publishing.Google Scholar
  48. Statistisches Landesamt Baden-Württemberg (2013). Allgemeinbildende Schulen nach Schularten. Accessed 15 Oct 2014.
  49. Swan, M. (1985). Language of functions and graphs. Nottingham: Shell Centre for Mathematical Education.Google Scholar
  50. Thompson, M., & Goe, L. (2009). Models for effective and scalable teacher professional development. Resource Document. Educational Testing Service. Accessed 15 Oct 2014.
  51. Timperley, H., Wilson, A., Barrar, H., & Fung, I. (2007). Teacher professional learning and development. Best evidence synthesis iteration (BES). Resource document. Wellington: New Zealand Ministry of Education. Accessed 15 Oct 2014.
  52. Van Driel, J. H., & Berry, A. (2012). Teacher professional development focusing on pedagogical content knowledge. Educational Researcher, 41(1), 26–28.CrossRefGoogle Scholar
  53. Vollrath, H.-J. (1989). Funktionales Denken. Journal für Mathematikdidaktik, 10(1989), 3–37.CrossRefGoogle Scholar
  54. Yoon, K. S., Duncan, T., Wen-Yu Lee, S., Scarloss, B., & Shapley, K. L. (2007). Reviewing the evidence on how teacher professional development affects student achievement. REL Southwest Issues and Answers (003). Resource document. Institute of Education Sciences, US Department of Education. Accessed 15 Oct 2014.
  55. Zehetmeier, S., & Krainer, K. (2011). Ways of promoting the sustainability of mathematics teachers’ professional development. ZDM - The International Journal on Mathematics Education, 43(6/7), 875–887.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2014

Authors and Affiliations

  1. 1.Institute for Mathematics Education FreiburgUniversity of Education FreiburgFreiburgGermany
  2. 2.Faculty of MathematicsUniversity of Duisburg-EssenEssenGermany

Personalised recommendations