, Volume 47, Issue 1, pp 13–25 | Cite as

Effective CPD on a large scale: examining the development of multipliers

  • Bettina Roesken-WinterEmail author
  • Sven Schüler
  • Rebekka Stahnke
  • Sigrid Blömeke
Original Article


Much research has been conducted on exploring teacher learning and constituting Continuous Professional Development (CPD) designs for teachers. Yet, little is known about appropriate design principles of CPD for teacher trainers/multipliers who in turn are supposed to provide CPD for teachers. The German Center for Mathematics Teacher Education (DZLM) offers special CPD courses for multipliers that focus on design principles identified as relevant for effective CPD of teachers in the research literature. The present study elaborates whether these principles can be transferred to CPD of multipliers and how in turn these principles are affected by them: Do they consider themselves more competent after a CPD course that followed the design principles of teacher CPD? What relevance do they assign to these CPD design principles derived from the literature and has the course design become relevant for their own work as CPD providers to teachers? Participants were 12 multipliers immersed in a 1-year CPD course. Data was gathered via questionnaires and interviews. Quantitative and qualitative data analyses were carried out. Our results reveal a significant improvement of self-estimated knowledge and skills in mathematics, mathematics pedagogy, CPD management, and technical skills between before and 6 or 10 months after the course. The multipliers’ descriptions of effective CPD focused on the design principles competence-orientation and participant-orientation. In sum, all design principles were rated as highly important for their own work as CPD providers although they were modified. Thus, the present paper reveals deeper insights into the developmental processes multipliers undergo when educated according to crucial design principles of effective CPD.


Design Principle Mathematics Teacher Technical Skill Continuous Professional Development Competence Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Berliner, D.C. (2004). Expert teachers: their characteristics, development and accomplishments. In R. Batllori i Obiols, A. E Gomez Martinez, M. Oller i Freixa, & J. Pages i. Blanch (Eds.), De la teoria….a l’aula: Formacio del professorat ensenyament de las ciències socials (pp. 13–28). Barcelona: Departament de Didàctica de la Llengua de la Literatura I de les Ciències Socials, Universitat Autònoma de Barcelona.Google Scholar
  2. Blömeke, S., Suhl, U., & Kaiser, G. (2011). Teacher education effectiveness: quality and equity of future primary teachers’ mathematics and mathematics pedagogical content knowledge. Journal of Teacher Education, 62(2), 154–171.CrossRefGoogle Scholar
  3. Blömeke, S., Suhl, U., Kaiser, G., & Döhrmann, M. (2012). Family background, entry selectivity and opportunities to learn: what matters in primary teacher education? An international comparison of fifteen countries. Teaching and Teacher Education, 28, 44–55.CrossRefGoogle Scholar
  4. Boesen, J., Helenius, B., & Johansson, B. (2015). National scale professional development in Sweden: theory, policy, practice. The International Journal on Mathematics Education, 47(1) (this issue).Google Scholar
  5. Borko, H. (2004). Professional development and teacher learning: mapping the terrain. Educational Researcher, 3(8), 3–15.CrossRefGoogle Scholar
  6. Boyle, B., Lamprianou, I., & Boyle, T. (2005). A longitudinal study of teacher change: what makes professional development effective? Report of the second year of study. School Effectiveness and School Improvement, 16, 1–26.CrossRefGoogle Scholar
  7. Carpenter, T. P., Fennema, E., Peterson, P. L., Chiang, C. P., & Loef, M. (1989). Using know-ledge of children’s mathematics thinking in classroom teaching. An experimental study. American Educational Research Journal, 4, 499–531.CrossRefGoogle Scholar
  8. Clarke, D. M. (1994). Ten key principles from research for the professional development of mathematics teachers. In D. B. Aichele & A. F. Croxford (Eds.), Professional development for teachers of mathematics (pp. 37–48). Reston: NCTM.Google Scholar
  9. Clarke, D., & Hollingsworth, H. (2002). Elaborating a model of teacher professional growth. Teaching and Teacher Education, 18, 947–967.CrossRefGoogle Scholar
  10. Cochran-Smith, M., & Lytle, S. L. (1999). Relationship of knowledge and practice: teacher learning in communities. In A. Iran-Nejad & C. Pearson (Eds.), Review of research in education (Vol. 24, pp. 249–306). Washington, DC: American Educational Research Association.Google Scholar
  11. Cochran-Smith, M., & Lytle, S. L. (2001). Beyond certainty: taking an inquiry stance on practice. In A. Lieberman & L. Miller (Eds.), Teachers caught in the action. Professional development that matters (pp. 45–58). New York: Teachers College Press.Google Scholar
  12. Cochran-Smith, M., & Zeichner, K. M. (Eds.). (2005). Studying teacher education. The report of the AERA panel on research and teacher education. Mahwah: Lawrence Erlbaum.Google Scholar
  13. Cohen, L., Manion, L., & Morrison, K. (2007). Research in methods in education (6th ed.). New York: Routledge.Google Scholar
  14. Cooney, T. J. (2001). Examining the notion of teacher change and its moral implications. In F. L. Lin & T. J. Cooney (Eds.), Making sense of mathematics teacher education (pp. 9–32). Dordrecht: Kluwer.CrossRefGoogle Scholar
  15. Day, C. (1999). Developing teachers: the challenges of lifelong learning. London: Routledge Falmer.Google Scholar
  16. Day, C., & Sachs, J. (2004). Professionalism, performativity and empowerment: discourses in the politics, policies and purposes of continuing professional development. In C. Day & J. Sachs (Eds.), International handbook on the continuing professional development of teachers (pp. 3–63). Berkshire: McGraw-Hill.Google Scholar
  17. Deci, E. L., & Ryan, R. M. (1993). Die Selbstbestimmungstheorie der Motivation und ihre Bedeutung für die Pädagogik. Zeitschrift für Pädagogik, 39, 223–238.Google Scholar
  18. Desimone, L. M. (2011). Improving impact studies of teachers’ professional development: toward better conceptualizations and measures. Educational Researcher, 38(3), 81–199.Google Scholar
  19. Desimone, L. M., Porter, A. C., Garet, M. S., Yoon, K. S., & Birman, B. F. (2002). Effects of professional development on teachers’ instruction: results from a 3-year longitudinal study. Educational Evaluation and Policy Analysis, 24, 81–112.CrossRefGoogle Scholar
  20. DMV, GDM, and MNU (2008). Standards für die Lehrerbildung im Fach Mathematik. Empfehlungen von DMV, GDM und MNU, Juni 2008. Mitteilungen der DMV, 16, 149–159.Google Scholar
  21. Drijvers, P., Kieran, C., & Mariotti, M.-A. (2009). Integrating technology into mathematics education: theoretical perspectives. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology: rethinking the terrain (pp. 89–132). New York: Springer.CrossRefGoogle Scholar
  22. DZLM (2014). Theoretischer Rahmen des Deutschen Zentrums für Lehrerbildung Mathematik. Accessed 13 October 2014.
  23. Franke, M. F., Carpenter, T. P., Levi, L., & Fennema, E. (2001). Capturing teachers’ generative change: a follow-up study of professional development in mathematics. American Educational Research Journal, 38(3), 653–689.CrossRefGoogle Scholar
  24. Garet, M.S., Cronen, S., Eaton, M., Kurki, A., Ludwig, M., Jones, W., et al. (2008). The impact of two professional development interventions on early reading instruction and achievement. Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education.Google Scholar
  25. Garet, M. S., Porter, A. C., Desimore, L., Birman, B. F., & Yoon, K. S. (2001). What makes professional development effective? Results from a national sample of teachers. American Educational Research, 38(4), 915–945.CrossRefGoogle Scholar
  26. Goldsmith, L., Doerr, H., & Lewis, C. (2014). Mathematics teachers’ learning: a conceptual framework and synthesis of research. Journal of Mathematics Teacher Education, 17(1), 5–36.CrossRefGoogle Scholar
  27. Goodchild, S. (2014). Mathematics teaching development: learning from developmental research in Norway. The International Journal on Mathematics Education, 46(2), 305–316.Google Scholar
  28. Goodson, I., & Hargreaves, A. (2003). Series Editors’ Preface. In J. Sachs (Ed.), The activist teaching profession (pp. ix–xi). Philadelphia: Open University Press.Google Scholar
  29. Guskey, T. R. (2000). Evaluating professional development. Thousand Oaks: Corwin Press.Google Scholar
  30. Guskey, T. R. (2004). Foreword. In C. Day & J. Sachs (Eds.), International handbook on the continuing professional development of teachers (pp. 3–5). Berkshire: McGraw-Hill.Google Scholar
  31. Hallgren, K. A. (2012). Computing inter-rater reliability for observational data: an overview and tutorial. Tutor Quant. Methods Psychology, 8(1), 23–34.Google Scholar
  32. Jaworski, B. (2006). Theory and practice in mathematics teaching development: critical inquiry as a mode of learning in teaching. Journal of Mathematics Teacher Education, 9(2), 187–211.CrossRefGoogle Scholar
  33. KMK (2004) Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland (Hrsg.), Standards für die Lehrerbildung: Bildungswissenschaften. Beschluss der Kultusministerkonferenz vom 16.12.2004.Google Scholar
  34. Krainer, K. (1998). Some considerations on problems and perspectives of mathematics teacher in-service education. In C. Alsina, J. M. Alvarez, B. Hodgson, C. Laborde, & A. Perez (Eds.), The 8th International Congress on Mathematical Education (ICME 8) [Selected Lectures] (pp. 303–321). Sevilla: S.A.E.M. Thales.Google Scholar
  35. Krainer, K. (2003). Teams, communities and networks. Journal of Mathematics Teacher Education, 6, 93–105.CrossRefGoogle Scholar
  36. Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., & Neubrand, M. (Eds.). (2011). Professionelle Kompetenz von Lehrkräften—Ergebnisse des Forschungsprogramms COACTIV. Münster: Waxmann.Google Scholar
  37. Kuzle, A., & Biehler, R. (2015). Dissemination at large: assisting mathematics mentor teachers implement quality professional development. The International Journal on Mathematics Education, 47(1) (this issue).Google Scholar
  38. Lachance, A., & Confrey, J. (2003). Interconnecting content and community: a qualitative study of secondary mathematics teachers. Journal of Mathematics Teacher Education, 6(2), 107–137.CrossRefGoogle Scholar
  39. Lam, T. C., & Bengo, P. (2003). A comparison of three retrospective self-reporting methods of measuring change in instructional practice. American Journal of Evaluation, 24(1), 65–80.CrossRefGoogle Scholar
  40. Lipowsky, F. (2004). Was macht Fortbildung für Lehrkräfte erfolgreich? Befunde der Forschung und mögliche Konsequenzen für die Praxis. Die deutsche Schule, 96, 462–479.Google Scholar
  41. Lipowsky, F. (2010). Lernen im Beruf—Empirische Befunde zur Wirksamkeit von Lehrerfortbildung. In F. Müller, A. Eichenberger, M. Lüders, & J. Mayr (Eds.), Lehrerinnen und Lehrer lernen—Konzepte und Befunde zur Lehrerfortbildung (pp. 51–72). Münster: Waxmann.Google Scholar
  42. Lipowsky, F. (2011). Theoretische Perspektiven und empirische Befunde zur Wirksamkeit von Lehrerfort- und -weiterbildung. In E. Terhart, H. Bennewitz, & M. Rothland (Eds.), Handbuch der Forschung zum Lehrerberuf (pp. 398–417). Münster: Waxmann.Google Scholar
  43. Lipowsky, F., & Rzejak, D. (2012). Lehrerinnen und Lehrer als Lerner—Wann gelingt der Rollentausch? Merkmale und Wirkungen effektiver Lehrerfortbildungen. Schulpädagogik heute, 5(3), 1–17.Google Scholar
  44. Loucks-Horsley, S., Love, N., Stiles, K. E., Mundry, S., & Hewson, P. W. (2003). Designing professional development for teachers of science and mathematics. Thousand Oaks: Corwin Press.Google Scholar
  45. Mayring, P. (2000). Qualitative Inhaltsanalyse. Grundlagen und Techniken (7th ed.). Weinheim: Deutscher Studien Verlag.Google Scholar
  46. Neumann, S. B., & Cunningham, L. (2009). The impact of professional development and coaching on early language and literacy instructional practices. American Educational Research Journal, 2, 532–566.CrossRefGoogle Scholar
  47. Putnam, R. T., & Borko, H. (2000). What do new views of knowledge and thinking have to say about research on teacher learning? Educational Researcher, 29(1), 4–15.CrossRefGoogle Scholar
  48. Roesken, B. (2011). Hidden dimensions in the professional development of mathematics teachers: In-service education for and with teachers. Rotterdam, Boston, Taipei: Sense.CrossRefGoogle Scholar
  49. Scherer, P., & Steinbring, H. (2006). Noticing children’s learning processes—teachers jointly reflect their own classroom interaction for improving mathematics teaching. Journal for Mathematics Teacher Education, 9(2), 157–185.Google Scholar
  50. Selter, C. (2006). Adressaten- und Berufsbezug in der Lehrerbildung. Konzeptionelles und Beispiele aus der Mathematik. Journal für Lehrerbildung, H.2, 57–64.Google Scholar
  51. Sowder, J. (2007). The mathematical education and development of teachers. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 157–224). Charlotte: Information Age.Google Scholar
  52. Terhart, E. (2000) (Ed.). Perspektiven der Lehrerbildung in Deutschland. Abschlussbericht der von der Kultusministerkonferenz eingesetzten Kommission. Weinheim und Basel: Beltz.Google Scholar
  53. Terhart, E. (2002). Standards für die Lehrerbildung. Eine Expertise für die Kultusministerkonferenz. ZKL-Texte Nr. 24. Universität Münster: Zentrale Koordination Lehrerbildung.Google Scholar
  54. Timperley, H., Wilson, A., Barrar, H., & Fung, I. (2007). Teacher professional learning and development. Best evidence synthesis iteration. Wellington: Ministry of Education.Google Scholar
  55. Wassong, T., & Biehler, R. (2010). A model for teacher knowledge as a basis for online courses for professional development of statistics education. In C. Reading (Ed), Proceedings of ICoTS 8, Ljubljana, July 2010. Voorburg: IASE.Google Scholar
  56. Weinert, F.E. (1999). Konzepte der Kompetenz. Gutachten zum OECD-ProjektDefinition and Selection of Competencies: Theoretical and Conceptual Foundations (DeSeCo)”. Neuchatel, Schweiz: Bundesamt für Statistik.Google Scholar
  57. Zehetmeier, S., & Krainer, K. (2011). Ways of promoting the sustainability of mathematics teachers’ professional development. The International Journal on Mathematics Education, 43(6/7), 875–887.Google Scholar

Copyright information

© FIZ Karlsruhe 2014

Authors and Affiliations

  • Bettina Roesken-Winter
    • 1
    Email author
  • Sven Schüler
    • 1
  • Rebekka Stahnke
    • 1
  • Sigrid Blömeke
    • 2
  1. 1.Humboldt-Universität zu BerlinBerlinGermany
  2. 2.Center for Educational MeasurementUniversity of OsloOsloNorway

Personalised recommendations