ZDM

, Volume 47, Issue 2, pp 269–279 | Cite as

Accumulation of experience in a vast number of cases: enactivism as a fit framework for the study of spatial reasoning in mathematics education

Original Article

Abstract

As we witness a push toward studying spatial reasoning as a principal component of mathematical competency and instruction in the twenty first century, we argue that enactivism, with its strong and explicit foci on the coupling of organism and environment, action as cognition, and sensory motor coordination provides an inclusive, expansive, apt, and fit framework. We illustrate the fit of enactivism as a theory of learning with data from an ongoing research project involving teachers and elementary-aged children’s engagement in the design and assembly of motorized robots. We offer that spatial reasoning with its considerations of physical context, the dynamics of a body moving through space, sensorimotor coordination, and cognition, appears different from other conceptual competencies in mathematics. Specifically, we argue that learner engagements with diverse types of informationally ‘dense’ visuo-spatial interfaces (e.g., blueprints, programming icons, blocks, maps), as in the research study, afford some of the necessary experiences with/in a vast number of cases described by Varela et al. (1991) that enable the development of other mathematical competencies.

Keywords

Enactivism Sensorimotor coordination Spatial reasoning Robotics 

References

  1. Barnett, T. (2013). What is spatial ability? wiseGEEK. Retrieved September 26, 2013, from http://www.wisegeek.org/what-is-spatial-ability.htm.
  2. Begg, A. (2013). Interpreting enactivism for learning and teaching. Education Sciences and Society, 4(1). Retrieved January 15, 2014 from http://riviste.unimc.it/index.php/es_s/article/view/699.
  3. Bergen, B. (2012). Louder than Words: The new science of how the mind makes meaning. NY: Basic Books.Google Scholar
  4. Brown, L., & Coles, A. (2011). Developing expertise: how enactivism reframes mathematics teacher development. ZDM—The International Journal on Mathematics Education, 43(6–7), 861–873. doi:10.1007/s11858-011-0343-4.CrossRefGoogle Scholar
  5. Bruce, C. D., Moss, J., Sinclair, N., Whiteley, W., Okamoto, Y., McGarvey, L., et al. (2013). Early years spatial reasoning: Learning, teaching and research implications. Workshop Presented at the NCTM research presession: Linking research and practice, Denver, CO.Google Scholar
  6. Carlson, A. G., Rowe, E., & Curby, T. W. (2013). Disentangling fine motor skills’ relations to academic achievement: the relative contributions of visual–spatial integration and visual–motor coordination. The Journal of Genetic Psychology, 174(5), 514–533. doi:10.1080/00221325.2012.717122.CrossRefGoogle Scholar
  7. Casey, B., Erkut, S., Ceder, I., & Young, J. (2008). Use of a storytelling context to improve girls’ and boys’ geometry skills in kindergarten. Journal of Applied Developmental Psychology, 29, 29–48.Google Scholar
  8. Cummins, F. (2013). Towards an enactive account of action: speaking and joint speaking as exemplary domains. Adaptive Behavior, 21(3), 178–186. doi:10.1177/1059712313483144.CrossRefGoogle Scholar
  9. Davis, B. (1996). Teaching mathematics: toward a sound alternative. New York: Garland.Google Scholar
  10. Dewey, J. (1896). The reflex arc concept in psychology. Psychological Review, 3(4), 357–466.CrossRefGoogle Scholar
  11. Di Jaegher, H., & Di Paulo, E. (2013). Enactivism is not interactionism. Frontiers in Human Neuroscience, 6(345), 1–2. doi:10.3389/fnhum.2012.00345.
  12. Ernest, P. (2006). Reflections on theories of learning. ZDM—The International Journal on Mathematics Education, 38(1), 3–7.Google Scholar
  13. Gojak, L. (2012). Helping our students become mathematical thinkers. Presidential Address presented at the NCTM 2012 Annual Meeting, Philadelphia. Retrieved February 12, 2014, from http://www.nctm.org/conferences/content.aspx?id=33201.
  14. Grissmer, D., Grimm, K. J., Aiyer, S. M., Murrah, W. M., & Steele, J. S. (2010). Fine motor skills and early comprehension of the world: two new school readiness indicators. Developmental Psychology, 46(5), 1008–1017. doi:10.1037/a0020104.CrossRefGoogle Scholar
  15. Humphreys, G. W., Yoon, E. Y., Kumar, S., Lestou, V., Kitadono, K., Roberts, K. L., et al. (2010). The interaction of attention and action: from seeing action to acting on perception. British Journal of Psychology, 101(2), 185–206. doi:10.1348/000712609X458927.CrossRefGoogle Scholar
  16. Hutto, D. D. (2013). Psychology unified: from folk psychology to radical enactivism. Review of General Psychology, 17(2), 174–178. doi:10.1037/a0032930.
  17. Jansen, P., Schmelter, A., Quaiser-Pohl, C., Neuberger, S., & Heil, M. (2013). Mental rotation performance in primary school age children: are there gender differences in chronometric tests? Cognitive Development, 28(1), 51–62. doi:10.1016/j.cogdev.2012.08.005.CrossRefGoogle Scholar
  18. Kahneman, D. (2011). Thinking, Fast and Slow. NY: Farrar, Strauss & Giroux.Google Scholar
  19. Kayhan, E. B. (2005). Investigation of high school students’ spatial ability. Middle East Technical University, Turkey. Retrieved September 25, 2013, from https://etd.lib.metu.edu.tr/upload/12605771/index.pdf.
  20. Keen, R., Carrico, R. L., Sylvia, M. R., & Berthier, N. E. (2003). How infants use perceptual information to guide action. Developmental Science, 6(2), 221–231. doi:10.1111/1467-7687.00274.CrossRefGoogle Scholar
  21. Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: how the embodied mind brings mathematics into being. New York: Basic Books.Google Scholar
  22. Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Development, 56(6), 1479–1498. doi:10.2307/1130467.CrossRefGoogle Scholar
  23. Maheux, J. F., & Proulx, J. (2015). Doing|mathematics: Analysing data with/in an enactivist-inspired approach. ZDM—The International Journal on Mathematics Education, 47(2).Google Scholar
  24. Mgombelo, J., & Reid, D. A. (2015). Key concepts in enactivist theory and methodology. ZDM—The International Journal on Mathematics Education, 47(2).Google Scholar
  25. Newcombe, N. S. (2010). Picture this: increasing math and science learning by improving spatial thinking. American Educator, 34(2), 29–35.Google Scholar
  26. Pouw, W. T. J. L., van Gog, T., & Paas, F. (2014). An embedded and embodied cognition review of instructional manipulatives. Education Psychology Review, 26, 51–72. doi:10.1007/s10648-014-9255-5.CrossRefGoogle Scholar
  27. Presmeg, N. (2014). Contemplating visualisation as an epistemological learning tool in mathematics. ZDM—The International Journal on Mathematics Education, 46(1), 151–157. doi:10.1007/s11858-013-0561-z.CrossRefGoogle Scholar
  28. Proulx, J. (2013). Mental mathematics, emergence of strategies, and the enactivist theory of cognition. Educational Studies in Mathematics, 84(3), 309–328. doi:10.1007/s10649-013-9480-8.CrossRefGoogle Scholar
  29. Rivera, F. D., Steinbring, H., & Arcavi, A. (2014). Visualisation as an epistemological learning tool: an introduction. ZDM—The International Journal on Mathematics Education, 46(1), 1–2. doi:10.1007/s11858-013-0552-0.CrossRefGoogle Scholar
  30. Rushton, S. K. (2008). Perceptually guided action: a step in the right direction. Current Biology, 18(1), R36–R37. doi:10.1016/j.cub.2007.10.064.CrossRefGoogle Scholar
  31. Sparks, S. D. (2013). Children’s spatial skills seen as key to math learning. Education Week, 32(31). Retrieved January 8, 2014, from http://www.edweek.org/ew/articles/2013/05/15/31learning.h32.html.
  32. Tepylo, D. (2013). Spatial reasoning: considerations for mathematics educators. Toronto: University of Toronto.Google Scholar
  33. Varela, F. J. (1999). Ethical know-how: Action, wisdom, and cognition. Stanford University Press.Google Scholar
  34. Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: cognitive science and human experience. Cambridge: MIT Press.Google Scholar
  35. Villalobos, M. (2013). Enactive cognitive science: revisionism or revolution? Adaptive Behaviour, 21(3), 159–167.CrossRefGoogle Scholar
  36. von Glasersfeld, E. (1995). Radical constructivism: a way of knowing and learning. Washington, D.C.: Falmer Press.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2014

Authors and Affiliations

  1. 1.Werklund School of EducationUniversity of CalgaryCalgaryCanada

Personalised recommendations