, Volume 46, Issue 7, pp 1061–1072 | Cite as

Mathematics and power: an alliance in the foundations of mathematics and its teaching

  • David KolloscheEmail author
Original Article


Following a genealogic approach, this paper discusses how logic and calculation are linked to epistemology, spirituality and politics; how mathematics education can be understood as an institution for a mathematical enculturation; and how, therefore, mathematics education necessarily (re)produces techniques of power which privilege some children while disadvantaging others. This approach criticises other critical studies on social dimensions of mathematics education which argue that the social dimensions are to be found in the application or teaching of mathematics alone. Instead, mathematics itself has, since its very beginning, been a knowledge which allows power, represents a specific world view and serves the interests of certain groups in society.


Logic Calculation Foucault Socio-linguistics 


  1. Anaximander (trans. 2007). Fragmente. In M. L. Gemelli Marciano (Ed.), Band 1 (pp. 32–51). Düsseldorf: Artemis & Winkler.Google Scholar
  2. Aristotle (trans. 1930). Physica. Oxford: Clarendon.Google Scholar
  3. Aristotle (trans. 1933). Metaphysics. In H. Tredennick (Ed.), Aristotle in 23 volumes. London: Heinemann.Google Scholar
  4. Aristotle (trans. 2006). Prior analytics. Book II. In A. J. Jenkinson (Ed.), Prior analytics and posterior analytics. Digireads.comGoogle Scholar
  5. Bernstein, B. (1971). A socio-linguistic approach to social learning. In B. Bernstein (Ed.), Class, codes and control (Vol. 1, pp. 118–139)., Theoretical studies towards a sociology of language London: Routledge.CrossRefGoogle Scholar
  6. Bishop, A. J. (2001). What values do you teach when you teach mathematics? In P. Gates (Ed.), Issues in mathematics teaching (pp. 93–104). London: Routledge Falmer.Google Scholar
  7. Brückner, A. (Ed.). (2008). Mathematik 7. Gymnasium Brandenburg. Berlin: Duden Paetec.Google Scholar
  8. Cooper, B., & Dunne, M. (2000). Assessing children’s mathematical knowledge: Social class, sex, and problem-solving. Buckingham: Open University.Google Scholar
  9. Descartes, R. (1990). Rules for the direction of the mind. In M. J. Adler (Ed.), Great books of the Western world (pp. 223–262). Chicago: Encyclopædia Britannica.Google Scholar
  10. Dowling, P. (1998). The sociology of mathematics education: Mathematical myths/pedagogic texts. London: Falmer.Google Scholar
  11. Foucault, M. (1970). The order of things: An archaeology of the human sciences. New York: Pantheon (Original work published 1966).Google Scholar
  12. Foucault, M. (1977). Discipline and punish: The birth of the prison. New York: Pantheon Books (Original work published 1975).Google Scholar
  13. Foucault, M. (1984). Nietzsche, genealogy, history. In P. Rabinow (Ed.), The Foucault reader (pp. 76–100). New York: Pantheon.Google Scholar
  14. Foucault, M. (1991). Governmentality. In G. Burchell, C. Gordon, & P. Miller (Eds.), The Foucault effect (pp. 87–104). Chicago: University of Chicago Press.Google Scholar
  15. Foucault, M. (2011). The Government of self and others: Lectures at the Collège de France, 1982–1983. New York: Picador.Google Scholar
  16. Gellert, U., & Jablonka, E. (Eds.). (2007). Mathematisation and demathematisation: Social, philosophical and educational ramifications. Rotterdam: Sense.Google Scholar
  17. Heinrich, K. (1987). Tertium datur: Eine religionsphilosophische Einführung in die Logik. Basel: Stroemfeld (Original work published 1981).Google Scholar
  18. Heraclitus (trans. 1979). Fragments. In The art and thought of Heraclitus. Cambridge: Cambridge University Press.Google Scholar
  19. Hilbert, D. (1922). Neubegründung der Mathematik. Abhandl. aus dem Math. Seminar d. Hamb. Univ., 1, 157–177.CrossRefGoogle Scholar
  20. Horkheimer, M., & Adorno, T. W. (1997). Dialectic of Enlightenment. London: Verso (Original work published 1944).Google Scholar
  21. Keitel, C. (1979). Sachrechnen. In D. Volk (Ed.), Kritische Stichwörter zum Mathematikunterricht (pp. 249–264). München: Wilhelm Fink.Google Scholar
  22. Klein, J. (1992). Greek mathematical thought and the origin of algebra. New York: Dover (Original work published 1936).Google Scholar
  23. KMK (2012). Bildungsstandards im Fach Mathematik für die Allgemeine Hochschulreife, 18.10.2012.Google Scholar
  24. KMK (Ständige Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland) (2003). Bildungsstandards im Fach Mathematik für den Mittleren Schulabschluss, 4.12.2003.Google Scholar
  25. Kollosche, D. (2013). Logic, society and school mathematics. In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), Proceedings of the Eighth Congress of the European Society for Research in Mathematics Education (pp. 1754–1763). Ankara: ERME.Google Scholar
  26. Krämer, S. (1988). Symbolische Maschinen. Darmstadt: WBG.Google Scholar
  27. Little Bear, L. (2002). Jagged worldviews colliding. In M. Battiste (Ed.), Reclaiming indigenous voice and vision (pp. 77–85). Vancouver: UBC.Google Scholar
  28. Merton, R. K. (1949). Social theory and social structure. Glencoe: Free Press.Google Scholar
  29. Parmenides (trans. 2009). Fragmente. In M. L. Gemelli Marciano (Ed.), Die Vorsokratiker. Band 2 (pp. 6–41). Düsseldorf: Artemis & Winkler.Google Scholar
  30. Plato (trans. 1892). Phaedo. In B. Jowett (Ed.), The dialogues of Plato. New York: Oxford University Press.Google Scholar
  31. Plato (trans. 1921). Theaetetus. In H. N. Fowler (Ed.), Plato in twelve volumes. London: Heinemann.Google Scholar
  32. Radford, L. (2008). Culture and cognition: Towards an anthropology of mathematical thinking. In L. D. English (Ed.), Handbook of international research in mathematics education (2nd ed., pp. 439–464). New York: Routledge.Google Scholar
  33. Schopenhauer, A. (1903). On the fourfold root of the principle of sufficient reason. London: Bell.Google Scholar
  34. Skovsmose, O. (2005). Travelling through education: Uncertainty, mathematics, responsibility. Rotterdam: Sense.Google Scholar
  35. Skovsmose, O. (2011). An invitation to critical mathematics education. Rotterdam: Sense.CrossRefGoogle Scholar
  36. Vernant, J.-P. (1982). The origins of Greek thought. Ithaca: Cornell (Original work published 1962).Google Scholar
  37. Weber, M. (1947). The theory of social and economic organization. New York: Oxford University Press (Original work published 1921).Google Scholar
  38. Weber, M. (1949). “Objectivity” in social science and social policy. In M. Weber (Ed.), The methodology of the social sciences (pp. 50–112). Glencoe: Free Press.Google Scholar
  39. Weber, M. (1972). Wirtschaft und Gesellschaft: Grundriss der verstehenden Soziologie. Tübingen: Mohr.Google Scholar
  40. Wußing, H. (2008). 6000 Jahre Mathematik: Band 1. Von den Anfängen bis Leibniz und Newton. Berlin: Springer.CrossRefGoogle Scholar
  41. Wyndhamn, J., & Säljö, R. (1997). Word problems and mathematics reasoning. A study of children’s mastery of reference and meaning in textual realities. Learning and Instruction, 7(4), 361–382.CrossRefGoogle Scholar
  42. Zevenbergen, R. (2000). “Cracking the code” of mathematics classrooms: school success as a function of linguistic, social and cultural background. In J. Boaler (Ed.), Multiple perspectives on mathematics teaching and learning (pp. 201–224). Westport: Ablex.Google Scholar

Copyright information

© FIZ Karlsruhe 2014

Authors and Affiliations

  1. 1.Universität PotsdamPotsdamGermany

Personalised recommendations