Advertisement

ZDM

, Volume 45, Issue 6, pp 797–810 | Cite as

Conceptualizing inquiry-based education in mathematics

  • Michèle Artigue
  • Morten BlomhøjEmail author
Original Article

Abstract

The terms inquiry-based learning and inquiry-based education have appeared with increasing frequency in educational policy and curriculum documents related to mathematics and science education over the past decade, indicating a major educational trend. We go back to the origin of inquiry as a pedagogical concept in the work of Dewey (e.g. 1916, 1938) to analyse and discuss its migration to science and mathematics education. For conceptualizing inquiry-based mathematics education (IBME) it is important to analyse how this concept resonates with already well-established theoretical frameworks in mathematics education. Six such frameworks are analysed from the perspective of inquiry: the problem-solving tradition, the theory of didactical situations, the realistic mathematics education programme, the mathematical modelling perspective, the anthropological theory of didactics, and the dialogical and critical approach to mathematics education. In an appendix these frameworks are illustrated with paradigmatic examples of teaching activities with inquiry elements. The paper is rounded off with a list of ten concerns for the development and implementation of IBME.

Keywords

Science Education Mathematical Knowledge Problem Solve Mathematics Education Research Realistic Mathematics Education 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We want to thank Paul Drivers, Paola Valero, the reviewers and the editor for valuable comments and suggestions on previous versions of this paper.

Supplementary material

11858_2013_506_MOESM1_ESM.pdf (197 kb)
Supplementary material (PDF 197 kb)

References

  1. Alrø, H., & Skovsmose, O. (2002). Dialogue and learning in mathematics education: Intention, reflection, critique. Dordrecht: Kluwer.Google Scholar
  2. Bachelard, G. (1938). La formation de l’esprit scientifique. Paris: Librairie Philosophique J. Vrin.Google Scholar
  3. Barrow, L. H. (2006). A brief history of inquiry: From Dewey to standards. Journal of Science Teacher Education, 17, 265–278.CrossRefGoogle Scholar
  4. Blomhøj, M. (2004). Mathematical modelling—a theory for practice. In B. Clarke, D. Clark, D. Lambdin, F. Lester, G Emanuelsson, B. Johansson, A. Walbym & K. Walby (Eds.), International perspectives on learning and teaching mathematics (pp. 145–160). Gothenburg: NCM, Gothenburg University.Google Scholar
  5. Blomhøj, M., & Kjeldsen, T. H. (2011). Students’ reflections in mathematical modelling projects. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 385–396). Dordrecht: Springer.CrossRefGoogle Scholar
  6. Blum, W., Galbraith, P., Henn, H.-W., & Niss, M. (Eds.). (2007). Modelling and applications in mathematics education. The 14th ICMI study (pp. 3–32). New York: Springer.Google Scholar
  7. Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht: Kluwer.Google Scholar
  8. Cai, J. (2010). Commentary on problem solving heuristics, affect, and discrete mathematics: A representational discussion. In B. Sriraman & L. English (Eds.), Theories of mathematics education (pp. 251–258). New York: Springer.CrossRefGoogle Scholar
  9. Cauvin, M. (1970). Le renouveau pédagogique en Allemagne de 1890 à 1933 (p. 38). Paris: Armand Colin.Google Scholar
  10. Chevallard, Y. (2011). La notion d’ingénierie didactique, un concept à refonder. Questionnement et éléments de réponse à partir de la TAD. In C. Margolinas, M. Abboud-Blanchard, L. Bueno-Ravel, N. Douek, A. Fluckiger, P. Gibel, F. Vandebrouck, & F. Wozniak (Eds.), En amont et en aval des ingénieries didactiques (pp. 81–108). Grenoble: La Pensée Sauvage.Google Scholar
  11. Chevallard, Y. (2013). Teaching mathematics in tomorrow’s society: A case for an oncoming counterparadigm. Lecture at ICME-12, Seoul. July 2012. http://www.icme12.org/upload/submission/1985_F.pdf. Accessed 4 Apr 2013 (to appear).
  12. Chevallard, Y., & Matheron, Y. (2002). Travaux personnels encadrés : Un cadre d’analyse didactique pour un changement majeur dans l’enseignement au lycée. In M. Bridenne (Ed.), Nouveaux dispositifs d’enseignement en mathématiques dans les colleges et les lycées. Dijon: IREM de Dijon.Google Scholar
  13. Dewey, J. (1916). Democracy and education. New York: Macmillan.Google Scholar
  14. Dewey, J. (1938). Logic: The theory of inquiry. New York: Holt.Google Scholar
  15. Fabre, M. (2009). Philosophie et pédagogie du problem. Paris: Librairie J. Vrin.Google Scholar
  16. Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: Reidel.Google Scholar
  17. Freudenthal, H. (1991). Revisiting mathematics education. China lectures. Dordrecht: Kluwer.Google Scholar
  18. Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics. Mathematical Thinking and Learning, 1, 155–177.CrossRefGoogle Scholar
  19. Gravemeijer, K., & Doorman, L. M. (1999). Context problems in realistic mathematics education: A calculus course as an example. Educational Studies in Mathematics, 39(1–3), 111–129.CrossRefGoogle Scholar
  20. Hanna, G., & de Villiers, M. (Eds.). (2012). Proof and proving in mathematics education. The 19th ICMI study. Dordrecht: Springer.Google Scholar
  21. Harlen, W. (2010). Principles and big ideas of science education. Hatfield, Herts: Association for Science Education. (Available from http://www.ase.org.uk in English, from http://www.fondation-lamap.org in French, and from http://www.innovec.org.mx in Spanish).
  22. Harlen, W. (2012). Inquiry in science education. In S. Borda Carulla (coord.), Resources for implementing inquiry in science and mathematics at school. http://www.fibonacci-project.eu. Accessed 4 Apr 2013.
  23. Hickman, L. A., & Spadafora, G. (Eds.) (2009). John Dewey’s educational philosophy in international perspective: A new democracy for the twenty-first century. Carbondale, IL: SIU Press.Google Scholar
  24. Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Human, P., Murray, H., et al. (1996). Problem solving as a basis for reform in curriculum and instruction: The case of mathematics. Educational Researcher, 25(4), 12–21.CrossRefGoogle Scholar
  25. Jaworski, B. (2004). Grappling with complexity: Co-learning in inquiry communities in mathematics teaching development. in Proceedings of the 28th conference of the international group for the psychology of mathematics education (Vol. I, pp. 17–36). Bergen: Bergen University College.Google Scholar
  26. Kaiser, G. (2002). Educational philosophies and their influence on mathematics education—an ethnographic study in English and German mathematics classrooms. ZDM—The International Journal on Mathematics Education, 34(6), 241–257.CrossRefGoogle Scholar
  27. Kaiser, G., Blum, W., Borromeo Ferri, R., & Stillman, G. (Eds.). (2011). Trends in teaching and learning of mathematical modelling. Dordrecht: Springer.Google Scholar
  28. Krainer, K. (2008). Individuals, teams, communities and networks: Participants and ways of participation in mathematics teacher education. In K. Krainer & T. Wood (Eds.), International handbook of mathematics teacher education. Participants in mathematics teacher education (Vol. 3, pp. 1–10). Rotterdam: Sense Publishers.Google Scholar
  29. Maaß, K., & Doorman, M. (2013). A model for a widespread implementation of inquiry-based learning. ZDM—The International Journal of Mathematical Education, 45(6), this issue. doi: 10.1007/s11858-013-0505-7
  30. Matheron Y. (2010). Démarche d’investigation et parcours d’etude et de recherche en mathématiques: entre injonctions institutionnelles et étude raisonnée des conditions et contraintes de viabilité au sein du système. In B. Grugeon (Ed.), Actes du 17 e Colloque de la CORFEM (pp. 17–39). Besançon: Université de Franche-Comté. http://iremlp.irem.univ-mrs.fr/site/sites/default/files/YMDémarche%20d'investigation.pdf. Accessed 4 Apr 2013.Google Scholar
  31. National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.Google Scholar
  32. National Research Council. (2000). Inquiry and the national science education standards. Washington, DC: National Academy Press.Google Scholar
  33. Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI study (pp. 3–32). New York: Springer.Google Scholar
  34. Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H., & Hemmo V. (2007). L’enseignement scientifique aujourd’hui:une pédagogie renouvelée pour l’avenir de l’Europe. Commission Européenne, Direction générale de la recherche, Science, économie et société.Google Scholar
  35. Schneider, M. (1991). Un obstacle épistémologique soulevé par les “découpages infinis” des surfaces et des solides. Recherches en Didactique des Mathématiques, 11(2–3), 241–294.Google Scholar
  36. Schoenfeld, A. H. (1992a). Learning to think mathematically: Problem solving, meta-cognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 334–370). New York: MacMillan.Google Scholar
  37. Schoenfeld, A. H. (1992b). Reflections on doing and teaching mathematics. In A. Schoenfeld (Ed.), Mathematical thinking and problem solving (pp. 53–70). Hillsdale, NJ: Erlbaum.Google Scholar
  38. Sensevy, G. (2011). Le sens du savoir. Eléments pour une théorie de l’action conjointe en didactique. Bruxelles: De Boeck Editions.Google Scholar
  39. Skovsmose, O. (1994). Towards a philosophy of critical mathematics education. Dordrecht: Kluwer.CrossRefGoogle Scholar
  40. Streefland, L. (1985). Wiskunde als activiteit en de realiteit als bron. Nieuwe Wiskrant, 5(1), 60–67.Google Scholar
  41. Treffers, A. (1987). Three dimensions: A model of goal and theory descriptions in mathematics education: The Wiskobas Project. Dordrecht: Reidel.Google Scholar
  42. Wittmann, E Ch. (2001). Developing mathematics education in a systemic process. Educational Studies in Mathematics, 48, 1–20.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2013

Authors and Affiliations

  1. 1.LDARUniversité Paris Diderot-Paris 7ParisFrance
  2. 2.IMFUFA, NSMRoskilde UniversityRoskildeDenmark

Personalised recommendations