, Volume 45, Issue 2, pp 199–213 | Cite as

Spatial visualizers, object visualizers and verbalizers: their mathematical creative abilities

  • Demetra Pitta-Pantazi
  • Paraskevi Sophocleous
  • Constantinos Christou
Original Article


This paper investigates the relationship between the creative process in mathematical tasks and spatial, object and verbal cognitive styles. A group of 96 prospective primary school teachers completed the Object-Spatial Imagery and Verbal Questionnaire and took a mathematical creativity test. The results of a multiple regression analysis demonstrated that whereas visual cognitive styles (spatial and object imagery) were statistically significant predictors of participants’ creative abilities in mathematics, verbal cognitive style did not predict these abilities. Further analysis of the data indicated that spatial imagery cognitive style was related to mathematical fluency, flexibility and originality. On the other hand, object imagery cognitive style was negatively related to mathematical originality and verbal cognitive style was negatively related to mathematical flexibility. The study also revealed that individuals with a tendency towards different cognitive styles employed different strategies in the creative mathematical tasks.


Spatial visualizers Object visualizers Verbalizers Mathematical creativity 


  1. Anderson, K. L., Casey, M. B., Thompson, W. L., Burrage, M. S., Pezaris, E., & Kosslyn, S. M. (2008). Performance on middle school geometry problems with geometry clues matched to three different cognitive styles. Mind, Brain, and Education, 2(4), 188–197.CrossRefGoogle Scholar
  2. Baggett, P., & Ehrenfeucht, A. (2008). Breaking away from the math book: Creative projects for K-12. Accessed 7 Nov 2012.
  3. Balka, D. S. (1974). Creative ability in mathematics. Arithmetic Teacher, 21(7), 633–636.Google Scholar
  4. Blajenkova, O., Kozhevnikov, M., & Motes, M. A. (2006). Object-spatial imagery: A new self-report imagery questionnaire. Applied Cognitive Psychology, 20(2), 239–263.CrossRefGoogle Scholar
  5. Blazhenkova, O., & Kozhevnikov, M. (2009). The new object-spatial-verbal cognitive style model: Theory and measurement. Applied Cognitive Psychology, 23(5), 638–663.CrossRefGoogle Scholar
  6. Borromeo Ferri, R. (2003). Mathematical thinking styles—an empirical study. In M. A. Mariotti (Ed.), Proceedings of the third conference of the European Society for Research in Mathematics Education. Bellaria, Italy. Accessed 7 Nov 2012.
  7. Borromeo Ferri, R. (2010). On the influence of mathematical thinking styles on learners’ modelling behaviour. Journal für Mathematikdidaktik, 31(1), 99–118.CrossRefGoogle Scholar
  8. Borromeo Ferri, R. (2012). Mathematical thinking styles and their influence on teaching and learning mathematics. Paper presented at the 12th International Congress on Mathematical Education, Seoul, Korea. Accessed 7 Nov 2012.
  9. Borromeo Ferri, R., & Kaiser, G. (2003). First results of a study on different mathematical thinking styles of school children. In L. Burton (Ed.), Which way social justice in mathematics education? (pp. 209–239). London: Greenwood.Google Scholar
  10. Burton, L. (2001). Research mathematicians as learners—and what mathematics education can learn from them. British Educational Research Journal, 27(5), 589–599.CrossRefGoogle Scholar
  11. Chabris, C. F., Jerde, T. E., Woolley, A. W., Gerbasi, M. E., Schuldt, J. P., Bennett, S. L., Hackman, J. R., & Kosslyn, S. M. (2006). Spatial and object visualization cognitive styles: Validation studies in 3800 individuals. Technical Report, Group Brain Project. Accessed 7 Nov 2012.
  12. Dunn, R., Beaudry, J. S., & Klavas, A. (1989). Survey of research on learning styles. Educational Leadership, 46(6), 50–58.Google Scholar
  13. Guilford, J. P. (1956). The structure of intellect. Psychological Bulletin, 53, 267–293.CrossRefGoogle Scholar
  14. Hadamard, J. (1945). The psychology of invention in the mathematical field. New York: Dover Publications.Google Scholar
  15. Iowa Department of Education (1989). A guide to developing higher order thinking across the curriculum. Des Moines, IA: Department of Education. Retrieved from ERIC database (ED 306 550).Google Scholar
  16. Kirby, J. R., Moore, P. J., & Schofield, N. J. (1988). Verbal and visual learning styles. Contemporary Educational Psychology, 13(2), 169–184.CrossRefGoogle Scholar
  17. Kirton, M. J. (Ed.). (1989). Adaptors and innovators: Styles of creativity and problem solving. London: Routledge.Google Scholar
  18. Kozhevnikov, M. (2007). Cognitive styles in the context of modern psychology: Toward an integrated framework of cognitive style. Psychological Bulletin, 133(3), 464–481.CrossRefGoogle Scholar
  19. Kozhevnikov, M., Blazhenkova, O., & Becker, M. (2010). Trade-off in object versus spatial visualization abilities: Restriction in the development of visual processing resources. Psychonomic Bulletin & Review, 17(1), 29–35.CrossRefGoogle Scholar
  20. Kozhevnikov, M., Hegarty, M., & Mayer, R. E. (2002). Revising the visualizer/verbalizer dimension: Evidence for two types of visualizers. Cognition & Instruction, 20(1), 47–77.CrossRefGoogle Scholar
  21. Kozhevnikov, M., Kosslyn, S., & Shephard, J. (2005). Spatial versus object visualizers: A new characterization of visual cognitive style. Memory and Cognition, 33(4), 710–726.CrossRefGoogle Scholar
  22. Kunzdorf, R. (1982). Mental images, appreciation of grammatical patterns, and creativity. Journal of Mental Imagery, 6, 183–202.Google Scholar
  23. Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 129–145). Rotterdam: Sense Publishers.Google Scholar
  24. Leikin, R., Berman, A., & Koichu, B. (Eds.). (2009). Creativity in mathematics and the education of gifted students. Rotterdam: Sense Publishers.Google Scholar
  25. Leikin, R., & Lev, M. (2007). Multiple solution tasks as a magnifying glass for observation of mathematical creativity. In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31st conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 161–168). Seoul: PME.Google Scholar
  26. Leikin, R., Pitta-Pantazi, D., Singer, F. M., & Ulovec, A. (2012). CERME7 working 7: Mathematical potential, creativity and talent. Research in Mathematics Education, 14(2), 197–198.CrossRefGoogle Scholar
  27. Levav-Waynberg, A., & Leikin, R. (2009). Multiple solutions for a problem: A tool for evaluation of mathematical thinking in geometry. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of sixth conference of European Research in Mathematics Education (pp. 776–785). Lyon: Institut National de Recherche Pédagogique.Google Scholar
  28. Mann, E. (2006). Creativity: The essence of mathematics. Journal for the Education of the Gifted, 30(2), 236–260.Google Scholar
  29. Martinsen, Ø., & Kaufmann, G. (1999). Cognitive style and creativity. In M. A. Runco & S. R. Pritzker (Eds.), Encyclopedia of creativity (Vol. 1, pp. 273–282). USA: Academic Press.Google Scholar
  30. Murphy, K. R., & Davidshofer, C. O. (2001). Psychological testing: Principles and application (5th ed.). Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  31. Pehkonen, E. (1997). The state-of-art in mathematical creativity. ZDM—The International Journal on Mathematics Education, 29(3), 63–67.CrossRefGoogle Scholar
  32. Pitta-Pantazi, D., & Christou, C. (2009). Cognitive styles, dynamic geometry and measurement performance. Educational Studies in Mathematics, 70(1), 5–26.CrossRefGoogle Scholar
  33. Pitta-Pantazi, D., & Christou, C. (2010). Spatial versus object visualisation: The case of mathematical understanding in three-dimensional arrays of cubes and nets. International Journal of Educational Research, 49(2–3), 102–114.CrossRefGoogle Scholar
  34. Presmeg, N. C. (1986). Visualisation and mathematical giftedness. Educational Studies in Mathematics, 17(3), 297–311.CrossRefGoogle Scholar
  35. Richardson, V. (Ed.). (2001). Handbook of research teaching (4th ed.). Washington: American Educational Research Association.Google Scholar
  36. Riding, R. J. (1997). On the nature of cognitive style. Educational Psychology, 17(1 and 2), 29–49.CrossRefGoogle Scholar
  37. Rosenberg, H. S. (1987). Visual artists and imagery. Imagination, Cognition and Personality, 7(1), 77–93.CrossRefGoogle Scholar
  38. Ryhammar, L., & Brolin, C. (1999). Creativity research: Historical considerations and main lines of development. Scandinavian Journal of Educational Research, 43(3), 259–273.CrossRefGoogle Scholar
  39. Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM—The International Journal on Mathematics Education, 29(3), 75–80.CrossRefGoogle Scholar
  40. Simon, A. M. (1993). Prospective elementary teachers’ knowledge of division. Journal for Research in Mathematics Education, 24(3), 233–254.CrossRefGoogle Scholar
  41. Singh, B. (1987). The development of tests to measure mathematical creativity. International Journal of Mathematical Education in Science and Technology, 18(2), 181–186.CrossRefGoogle Scholar
  42. Sriraman, B. (2009). The characteristics of mathematical creativity. ZDM—The International Journal on Mathematics Education, 41(1–2), 13–27.CrossRefGoogle Scholar
  43. Sternberg, R. J. (1994). Allowing for thinking styles. Educational Leadership, 52(3), 36–40.Google Scholar
  44. Sternberg, R. J. (2012). The assessment of creativity: An investment-based approach. Creativity Research Journal, 24(1), 3–12.CrossRefGoogle Scholar
  45. Sternberg, R. J., & Grigorenko, E. L. (1997). Are cognitive styles still in style? American Psychologist, 52(7), 700–712.CrossRefGoogle Scholar
  46. Torrance, E. P. (1974). A manual for the Torrance tests of creative thinking. Princeton, NJ: Personnel Press.Google Scholar
  47. Torrance, E. P. (1998). The Torrance tests of creative thinking norms—technical manual figural (streamlined) forms A & B. Bensenville, IL: Testing Service, Inc.Google Scholar
  48. Woodman, R. W., & Schoenfeldt, L. F. (1990). An interactionist model of creative behavior. Journal of Creative Behavior, 24(4), 279–290.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2012

Authors and Affiliations

  • Demetra Pitta-Pantazi
    • 1
  • Paraskevi Sophocleous
    • 1
  • Constantinos Christou
    • 1
  1. 1.Department of EducationUniversity of CyprusNicosiaCyprus

Personalised recommendations