Advertisement

ZDM

, Volume 44, Issue 3, pp 223–247 | Cite as

Assessment of teacher knowledge across countries: a review of the state of research

  • Sigrid Blömeke
  • Seán Delaney
Original Article

Abstract

This review presents an overview of research on the assessment of mathematics teachers’ knowledge as one of the most important parameters of the quality of mathematics teaching in school. Its focus is on comparative and international studies that allow for analyzing the cultural dimensions of teacher knowledge. First, important conceptual frameworks underlying comparative studies of mathematics teachers’ knowledge are summarized. Then, key instruments designed to assess the content knowledge and pedagogical content knowledge of future and practicing mathematics teachers in different countries are described. Core results from comparative and international studies are documented, including what we know about factors influencing the development of teacher knowledge and how the knowledge is related to teacher performance and student achievement. Finally, we discuss the challenges connected to cross-country assessments of teacher knowledge and we point to future research prospects.

Keywords

Mathematics teacher education Comparative study Mathematics content knowledge (MCK) Mathematics pedagogical content knowledge (MPCK) Large-scale assessment 

References

  1. Adams, R. J., Wilson, M., & Wang, W. C. (1997). The multidimensional random coefficients multinominal logit. Applied Psychological Measurement, 21, 1–24.CrossRefGoogle Scholar
  2. Adler, J., & Ball, D. (2009). Introduction to and overview of this special issue. For the Learning of Mathematics: Knowing and Using Mathematics in Teaching, 29(3), 2–3.Google Scholar
  3. Adler, J., Ball, D., Krainer, K., Lin, F. L., & Novotna, J. (2005). Reflections on an emerging field: research on mathematics teacher education. Educational Studies in Mathematics, 60, 359–381.CrossRefGoogle Scholar
  4. Adler, J., & Davis, Z. (2006). Opening another black box: researching mathematics for teaching in mathematics teacher education. Journal for Research in Mathematics Education, 37(4), 270–296.Google Scholar
  5. An, S. (2009). Chinese teachers’ knowledge of teaching multi-digit division. Journal of Mathematics Education, 2(1), 27–54.Google Scholar
  6. An, S., Kulm, G., & Wu, Z. (2004). The pedagogical content knowledge of middle school mathematics teachers in China and the U.S. Journal of Mathematics Teacher Education, 7, 145–172.CrossRefGoogle Scholar
  7. An, S., & Wu, Z. (2011). Enhancing mathematics teachers’ knowledge of students’ thinking from assessing and analyzing misconceptions. International Journal of Science and Mathematics Education, 1–37. doi: 10.1007/s10763-011-9324-x
  8. Anderson, J. R., & Lebière, C. (1998). The atomic components of thought. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  9. Ball, D. L., & Bass, H. (2003). Toward a practice-based theory of mathematical knowledge for teaching. Paper presented at the Annual meeting of the Canadian Mathematics Education Study Group, Edmonton, AB.Google Scholar
  10. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: what makes it special? Journal of Teacher Education, 59(5), 389–407.CrossRefGoogle Scholar
  11. Bateson, M. C. (1994). Peripheral visions: Learning along the way. New York: Harper Collins.Google Scholar
  12. Baumert, J., Klieme, E., Neubrand, M., Prenzel, M., Schiefele, U., Schneider, W., et al. (Eds.). (2001). PISA 2000: Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich. Opladen: Leske + Budrich.Google Scholar
  13. Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., Klusmann, U., & Tsai, Y.-M. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133–180.CrossRefGoogle Scholar
  14. Bednarz, N., & Proulx, J. (2009). Knowing and using mathematics in teaching: conceptual and epistemological clarifications. For the Learning of Mathematics: Knowing and Using Mathematics in Teaching, 29(3), 11–17.Google Scholar
  15. Begle, E. G. (1972). Teacher knowledge and student achievement in algebra. School Mathematics Study Group Reports, No. 9. Washington, D.C.: National Science Foundation.Google Scholar
  16. Begle, E. G. (1979). Critical variables in mathematics education. Washington D.C: Mathematical Association of America and the National Council of Teachers of Mathematics.Google Scholar
  17. Bell, C. A., Wilson, S. M., Higgins, T., & McCoach, D. B. (2010). Measuring the effects of professional development on teacher knowledge: the case of developing mathematical ideas. Journal for Research in Mathematics Education, 41(5), 479–512.Google Scholar
  18. Bishop, A. (1988). Mathematical enculturation: A cultural perspective on mathematics education. Dordrecht: Kluwer.Google Scholar
  19. Blömeke, S. (2012). Content, professional preparation and teaching methods: how diverse is teacher education across countries? Comparative Education Review (in press).Google Scholar
  20. Blömeke, S., Felbrich, A., Müller, Ch., Kaiser, G., & Lehmann, R. (2008a). Effectiveness of teacher education. State of research, measurement issues and consequences for future studies. ZDM—The International Journal on Mathematics Education, 40(5), 719–734.CrossRefGoogle Scholar
  21. Blömeke, S., Houang, R., & Suhl, U. (2011). TEDS-M: Diagnosing teacher knowledge by applying multidimensional item response theory and multi-group models. IERI Monograph Series: Issues and Methodologies in Large-Scale Assessments. No. 4, pp. 109–126.Google Scholar
  22. Blömeke, S., & Kaiser, G. (2010). Mathematics teacher education and gender effects. In H. Forgasz, K.-H. Lee, J. R. Becker, & O. B. Steinstorsdottir (Eds.), International perspectives on gender and mathematics education (pp. 263–283). Charlotte, NC: Information Age Publishing.Google Scholar
  23. Blömeke, S., Kaiser, G., & Lehmann, R. (Eds.). (2008b). Professionelle Kompetenz angehender Lehrerinnen und Lehrer. Wissen, Überzeugungen und Lerngelegenheiten deutscher Mathematikstudierender und -referendare—Erste Ergebnisse zur Wirksamkeit der Lehrerausbildung. Münster: Waxmann.Google Scholar
  24. Blömeke, S., Kaiser, G., & Lehmann, R. (Eds.). (2010a). TEDS-M 2008: Professionelle Kompetenz und Lerngelegenheiten angehender Primarstufenlehrkräfte im internationalen Vergleich [Cross-national comparison of the professional competency of and learning opportunities for future primary school teachers]. Münster: Waxmann.Google Scholar
  25. Blömeke, S., Kaiser, G., & Lehmann, R. (Eds.). (2010b). TEDS-M 2008: Professionelle Kompetenz und Lerngelegenheiten angehender Mathematiklehrkräfte für die Sekundarstufe I im internationalen Vergleich [Cross-national comparison of the professional competency of and learning opportunities for future secondary school teachers of mathematics]. Münster: Waxmann.Google Scholar
  26. Blömeke, S., & Paine, L. (2008). Getting the fish out of the water: considering benefits and problems of doing research on teacher education at an international level. Teaching and Teacher Education, 24(4), 2027–2037.CrossRefGoogle Scholar
  27. Blömeke, S., Suhl, U., & Döhrmann, M. (2012). Zusammenfügen was zusammengehört. Kompetenzprofile am Ende der Lehrerausbildung im internationalen Vergleich. Zeitschrift für Pädagogik (in press).Google Scholar
  28. Blömeke, S., Suhl, U., & Kaiser, G. (2011b). Teacher education effectiveness: quality and equity of future primary teachers’ mathematics and mathematics pedagogical content knowledge. Journal of Teacher Education, 62(2), 154–171.CrossRefGoogle Scholar
  29. Blömeke, S., Suhl, U., Kaiser, G., & Döhrmann, M. (2012b). Family background, entry selectivity and opportunities to learn: what matters in primary teacher education? An international comparison of fifteen countries. Teaching and Teacher Education, 28, 44–55.CrossRefGoogle Scholar
  30. Blumer, H. (1969). Symbolic interactionism: Perspective and method. Berkeley: University of California Press.Google Scholar
  31. Boekaerts, M., & Corno, L. (2005). Self-regulation in the classroom: a perspective on assessment and intervention. Applied Psychology: An International Review, 54(2), 199–231.CrossRefGoogle Scholar
  32. Boyd, D., Grossman, P. L., Lankford, H., Loeb, S., & Wyckoff, J. (2009). Teacher preparation and student achievement. Educational Evaluation and Policy Analysis, 31(4), 416–440.CrossRefGoogle Scholar
  33. Bramald, R., Hardman, F., & Leat, D. (1995). Initial teacher trainees and their views of teaching and learning. Teaching and Teacher Education, 1, 23–31.CrossRefGoogle Scholar
  34. Brennan, R. L., & Johnson, E. G. (1995). Generalizability of performance assessments. Educational Measurement: Issues and Practice, 14(4), 9–12.CrossRefGoogle Scholar
  35. Bromme, R. (1994). Beyond subject matter: A psychological topology of teachers’ professional knowledge. In R. Biehler, R. W. Scholz, R. Straesser, & B. Winkelmann (Eds.), Mathematics didactics as a scientific discipline: The state of the art (pp. 73–88). Dordrecht: Kluwer.Google Scholar
  36. Bromme, R. (1997). Kompetenzen, Funktionen und unterrichtliches Handeln des Lehrers [Competencies, objectives and classroom performance of teachers]. In F. E. Weinert (Ed.), Enzyklopädie der Psychologie: Psychologie des Unterrichts und der Schule. Bd. 3 [Encyclopedia psychology: Psychology of teaching, learning and schools] (pp. 177–212). Göttingen: Hogrefe.Google Scholar
  37. Brouwer, N. (2010). Determining long term effects of teacher education. In P. Peterson, E. Baker, & B. McGaw (Eds.), International encyclopedia of education (Vol. 7, pp. 503–510). Oxford: Elsevier.CrossRefGoogle Scholar
  38. Brown, S., & McIntyre, D. (1983). Teacher attitudes and innovation characteristics. Let’s try again: a rejoinder. Curriculum Inquiry, 13, 447–451.CrossRefGoogle Scholar
  39. Brown, D. F., & Rose, T. J. (1995). Self-reported classroom impact of teachers’ theories about learning and obstacles to implementation. Action in Teacher Education, 17(1), 20–29.CrossRefGoogle Scholar
  40. Burgess, T. (2009). Statistical knowledge for teaching: exploring it in the classroom. For the Learning of Mathematics, 29(3), 18–21.Google Scholar
  41. Burghes, D. (2008). International comparative study in mathematics teacher training. Reading: CfBT.Google Scholar
  42. Butler, D. L., & Winne, P. H. (1995). Feedback and self-regulated learning: a theoretical synthesis. Review of Educational Research, 65(3), 245–281.Google Scholar
  43. Butterfield, B., & Chinnappan, M. (2010). Walking the talk: Translation of mathematical content knowledge to practice. In L. Sparrow, B. Kissane, & C. Hurst (Eds.), Proceedings of the 33rd annual conference of the Mathematics Education Research Group of Australasia: Shaping the future of mathematics education (Vol. 2, pp. 109–116). Freemantle, WA: MERGA Inc.Google Scholar
  44. Butterfield, B., & Chinnappan, M. (2011). Teacher knowledge activated in the context of designing problems. In J. Clark, B. Kissane, J. Mousley, T. Spencer, & S. Thornton (Eds.), Mathematics: Traditions and (new) practices. Proceedings of the 23rd biennial conference of the Australian Association of Mathematics Teachers Inc. and the 34th annual conference of the Mathematics Education Research Group of Australasia Inc. (pp. 142–150). Adelaide: MERGA/AAMT.Google Scholar
  45. Cai, J. (2000). Mathematical thinking involved in U.S. and Chinese students’ solving of process-constrained and process-open problems. Mathematical Thinking and Learning, 2(4), 309–340.CrossRefGoogle Scholar
  46. Calderhead, J. (1996). Teachers: Beliefs and knowledge. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 709–725). New York: Macmillan.Google Scholar
  47. Chick, H. L., Pham, T., & Baker, M. K. (2006). Probing teachers’ pedagogical content knowledge: Lessons from the case of the subtraction algorithm. In P. Grootenboer, R. Zevenbergen, & M. Chinnappan (Eds.), Identities, cultures and learning spaces. Proceedings of the 29th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 139–146). Canberra: MERGA.Google Scholar
  48. Chinnappan, M., & Lawson, M. J. (2005). A framework for analysis of teachers’ geometric content knowledge and geometric knowledge for teaching. Journal of Mathematics Teacher Education, 8, 197–221.CrossRefGoogle Scholar
  49. Clotfelter, C., Ladd, H., & Vigdor, J. (2006). Teacher credentials and student achievement in high school: A cross-subject analysis with student fixed effects. Cambridge, MA: National Bureau of Economic Research.Google Scholar
  50. Cochran-Smith, M., & Zeichner, K. M. (Eds.). (2005). Studying teacher education. The report of the AERA panel on research and teacher education. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  51. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  52. Coleman, J. S., Campbell, E. Q., Hobson, C. J., McPartland, F., Mood, A. M., Weinfeld, F. D., et al. (1966). Equality of educational opportunity. Washington, DC: U.S. Government Printing Office.Google Scholar
  53. Constantine, J., Player, D., Silva, T., Hallgren, K., Grider, M., Deke, J., & Warner, E. (2009). An evaluation of teachers trained through different routes to certification. NCEE 2009-4043. Washington, DC: IES.Google Scholar
  54. Cuoco, A. (2001). Mathematics for teaching. Notices of the AMS, 48(2), 168–174.Google Scholar
  55. Darling-Hammond, L. (2000). Teacher quality and student achievement. Education Policy Analysis Archives, 8, 1. http://epaa.asu.edu/ojs/article/view/392. Accessed 3 May 2012.
  56. De Jong, M. G., Steenkamp, J. B. E. M., & Fox, J.-P. (2007). Relaxing cross-national measurement invariance using a hierarchical IRT model. Journal of Consumer Research, 34, 260–278.CrossRefGoogle Scholar
  57. Delaney, S., Ball, D. L., Hill, H. C., Schilling, S. G., & Zopf, D. (2008). “Mathematical knowledge for teaching”: adapting U.S. measures for use in Ireland. Journal of Mathematics Teacher Education, 11(3), 171–197.CrossRefGoogle Scholar
  58. Eberle, T., & Pollak, G. (2006). Studien- und Berufswahlmotivation von Passauer Lehramtsstudierenden. In N. Seibert (Ed.), Paradigma. Beiträge aus Forschung und Lehre aus dem Zentrum für Lehrerbildung und Fachdidaktik (pp. 19–37). Passau: Zentrum für Lehrerbildung und Fachdidaktik.Google Scholar
  59. Eisenberg, T. A. (1977). Begle revisited: teacher knowledge and student achievement in algebra. Journal for Research in Mathematics Education, 8(3), 216–222.CrossRefGoogle Scholar
  60. Ferrini-Mundy, J., Floden, R., McCrory, R., Burrill, G., & Sandow, D. (2005). A conceptual framework for knowledge for teaching school algebra. East Lansing, MI: Authors.Google Scholar
  61. Forrester, T., & Chinnappan, M. (2011). Two avatars of teachers’ content knowledge of mathematics. In J. Clark, B. Kissane, J. Mousley, T. Spencer, & S. Thornton (Eds.), Mathematics: Traditions and (new) practices. Proceedings of the 23rd biennial conference of the Australian Association of Mathematics Teachers Inc. and the 34th annual conference of the Mathematics Education Research Group of Australasia Inc. (pp. 261–269). Adelaide: MERGA/AAMT.Google Scholar
  62. Fox, J.-P. (2005). Multilevel IRT using dichotomous and polytomous items. British Journal of Mathematical and Statistical Psychology, 58, 145–172.CrossRefGoogle Scholar
  63. Goldhaber, D., & Liddle, S. (2011). The gateway to the profession. Assessing teacher preparation programs based on student achievement. CEDR Working Paper 2011-2. Seattle, WA: University of Washington.Google Scholar
  64. Graeber, A., & Tirosh, D. (2008). Pedagogical content knowledge: Useful concept or elusive notion. In P. Sullivan, & T. Woods (Eds.), Knowledge and beliefs in mathematics teaching and teaching development. The international handbook of mathematics teacher education (Vol. 1, pp. 117–132). Rotterdam: Sense Publisher.Google Scholar
  65. Hambleton, R. K. (2002). Adapting achievement tests into multiple languages for international assessments. In A. C. Porter & A. Gamoran (Eds.), Methodological advances in cross-national surveys of educational achievement (pp. 58–79). Washington: National Academy Press.Google Scholar
  66. Heid, K. M. (2008). Mathematical knowledge for secondary school mathematics teaching. Paper presented at the 11th International Congress on Mathematical Education, Monterrey, Mexico.Google Scholar
  67. Hill, H. C. (2007). Mathematical knowledge of middle school teachers: Implications for the No Child Left Behind policy initiative. Educational Evaluation and Policy Analysis, 29(2), 95–114.CrossRefGoogle Scholar
  68. Hill, H. C., & Ball, D. L. (2004). Learning mathematics for teaching: results from California’s mathematics professional development institutes. Journal for Research in Mathematics Education, 35(5), 330–351.CrossRefGoogle Scholar
  69. Hill, H. C., Ball, D. L., Blunk, M. L., Goffney, I. M., & Rowan, B. (2007). Validating the ecological assumption: the relationship of measure scores to classroom teaching and student learning. Measurement: Interdisciplinary Research and Perspectives, 5(2 and 3), 107–118.Google Scholar
  70. Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: conceptualising and measuring teachers’ topic-specific knowledge of students. Journal for Research in Mathematics Education, 39(4), 372–400.Google Scholar
  71. Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371–406.CrossRefGoogle Scholar
  72. Hill, H. C., Schilling, S. G., & Ball, D. L. (2004). Developing measures of teachers’ knowledge for teaching. The Elementary School Journal, 105(1), 11–30.CrossRefGoogle Scholar
  73. Hill, H. C., Sleep, L., Lewis, J. M., & Ball, D. L. (2007b). Assessing teachers’ mathematical knowledge. In F. K. Lester (Ed.), Handbook for research on mathematics education (2nd ed., pp. 111–155). Charlotte, NC: Information Age.Google Scholar
  74. Hofstede, G. (1983). Culture’s consequences: international differences in work-related values. Administrative Science Quarterly, 28(4), 625–629.CrossRefGoogle Scholar
  75. Hofstede, G. (1993). Cultures and organizations: software of the mind. Administrative Science Quarterly, 38(1), 132–134.CrossRefGoogle Scholar
  76. Hsieh, F.-J. (2010). Indicators of teaching ability for ideal mathematics teachers (theoretical framework). In F.-J. Hsieh & C. Chong (Eds.), Learning from students—sailing for elaborated teaching (pp. 9–18). Taipei: MOE.Google Scholar
  77. Hsieh, F.-J., Law, C.-K., Shy, H.-Y., Wang, T.-Y., Hsieh, C.-J., & Tang, S.-J. (2011). Mathematics teacher education quality in TEDS-M—globalizing the views of future teachers and teacher educators. Journal of Teacher Education, 60(2), 172–187.CrossRefGoogle Scholar
  78. Hsieh, F.-J., Wang, T.-Y., Hsieh, C.-J., Tang, S.-J., Chao, G.-H., Law C.-K., et al. (2010). A milestone of an international study in Taiwan teacher education—an international comparison of Taiwan mathematics teachers. Taiwan TEDS-M 2008.Google Scholar
  79. Hsieh, F.-J., Yang, C.-Z., & Shy, H.-Y. (2012). OTL of secondary mathematics teacher in teacher education curriculum. In F.-J. Hsieh (Ed.), Taiwan TEDS-M national report (in press).Google Scholar
  80. Huillet, D. (2009). Mathematics for teaching: an anthropological approach and its use in teacher training. For the Learning of Mathematics: Knowing and Using Mathematics in Teaching, 29(3), 4–10.Google Scholar
  81. Hyde, J. S., Lindberg, S. M., Linn, M. C., Ellis, A., & Williams, C. (2008). Gender similarities characterize math performance. Science, 321, 494–495.CrossRefGoogle Scholar
  82. Jakobsen, A., Thames, M. H., Ribeiro, C. M., & Delaney, S. (2012). Using practice to define and distinguish horizon content knowledge. Paper prepared for the twelfth International Conference on Mathematical Education, Seoul, Korea.Google Scholar
  83. Johansone, I., & Malak, B. (2008). Translation and national adaptations of the TIMSS 2007 assessment and questionnaires. In J. F. Olson, M. O. Martin, & I. V. S. Mullis (Eds.), TIMSS 2007 technical report (pp. 63–75).Google Scholar
  84. Johnson, T. P. (1998). Approaches to equivalence in cross-cultural and cross-national survey research. In J. Harkness (Ed.), Cross cultural survey equivalence. Mannheim: ZUMA.Google Scholar
  85. Kaiser, G. (1995). Results from a comparative empirical study in England and Germany on the learning of mathematics in context. In C. Sloyer, W. Blum, & I. Huntley (Eds.), Advances and perspectives on the teaching of mathematical modelling and applications (pp. 83–95). Yorklyn: Water Street Mathematics.Google Scholar
  86. Kane, M. T. (1992). An argument-based approach to validity. Psychological Bulletin, 112, 527–535.CrossRefGoogle Scholar
  87. Kane, M. T., Crooks, T., & Cohen, A. (1999). Validating measures of performance. Educational Measurement: Issues and Practice, 18(2), 5–17.CrossRefGoogle Scholar
  88. Kazima, M., & Adler, J. (2006). Mathematical knowledge for teaching: adding to the description through a study of probability in practice. Pythagoras, 63, 46–59.Google Scholar
  89. Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press.Google Scholar
  90. KMK (Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland) (Ed.). (2004). Bildungsstandards im Fach Mathematik für den Mittleren Schulabschluss (Jahrgangsstufe 10). München: Wolters Kluwer.Google Scholar
  91. Krauss, S., Baumert, J., & Blum, W. (2008a). Secondary mathematics teachers’ pedagogical content knowledge and content knowledge: validation of the COACTIV constructs. ZDM—The International Journal on Mathematics Education, 40, 873–892.CrossRefGoogle Scholar
  92. Krauss, S., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, M., et al. (2008b). Pedagogical content knowledge and content knowledge of secondary mathematics teachers. Journal of Educational Psychology, 100(3), 716–725.CrossRefGoogle Scholar
  93. Kristjánsdóttir, A. (2008). Developing of teachers’ professional knowledge of mathematics. Historical, present and future perspectives. Paper presented at ICME-11, Topic Study Group 27 in Mexico.Google Scholar
  94. Leder, C., Pehkonen, E., & Törner, G. (Eds.). (2002). Beliefs: A hidden variable in mathematics education?. Dordrecht: Kluwer.Google Scholar
  95. Leinhardt, G., & Greeno, G. (1986). The cognitive skill of teaching. Journal of Educational Psychology, 78(2), 75–95.CrossRefGoogle Scholar
  96. LeTendre, G. K. (1999). The problem of Japan: qualitative studies and international educational comparisons. Educational Researcher, 28(2), 38–45.Google Scholar
  97. Leung, F. K. S. (2001). In search of an East Asian identity in mathematics education. Educational Studies in Mathematics, 47(1), 35–51.CrossRefGoogle Scholar
  98. Leung, F. K. S., Graf, K.-D., & Lopez-Real, F. J. (2006). Mathematics education in different cultural traditions: A comparative study of East Asia and the West. In F. K. S. Leung, K.-D. Graf, & F. J. Lopez-Real (Eds.), Mathematics education in different cultural traditions. A comparative study of East Asia and the West. The 13th ICMI study (pp. 1–20). New York: Springer.CrossRefGoogle Scholar
  99. Ma, L. (1999). Knowing and teaching elementary mathematics. Mahwah, NJ: Lawrence Erlbaum Associates Inc.Google Scholar
  100. Monk, D. H. (1989). The education production function: its evolving role in policy analysis. Educational Evaluation and Policy Analysis, 11(1), 31–45.Google Scholar
  101. Mosvold, R., Fauskanger, J., Jakobsen, A., & Melhus, K. (2009). Translating test items into Norwegian—without getting lost in translation. Nordic Studies in Mathematics Education, 14(4), 101–123.Google Scholar
  102. Mueller, C. W., & Parcel, T. L. (1981). Measures of socioeconomic status: alternatives and recommendations. Child Development, 52, 13–30.CrossRefGoogle Scholar
  103. Mullis, I. V. S., Martin, M. O., Beaton, A. E., Gonzalez, E. J., Kelly, D. L., & Smith, T. A. (1997). Mathematics achievement in the primary school years: IEA’s Third International Mathematics and Science Study. Chestnut Hill, MA: Boston College.Google Scholar
  104. Mullis, I. V. S., Martin, M. O., & Foy, P. (2008). TIMSS 2007 international mathematics report: Findings from IEA’s trends in international mathematics and science study at the fourth and eighth grades. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.Google Scholar
  105. Musset, P. (2010). Initial teacher education and continuing training policies in a comparative perspective: Current practices in OECD countries and a literature review on potential effects. OECD Education Working Papers, No. 48. Paris: OECD Publishing.Google Scholar
  106. Naik, S. (2008). The measures for understanding teachers’ mathematical knowledge for teaching fractionshow do they really work? Paper presented at ICME-11, Topic Study Group 27 in Mexico.Google Scholar
  107. National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston: NCTM.Google Scholar
  108. National Research Council. (2003). Understanding others, educating ourselves: Getting more from international comparative studies in education. Washington, DC: National Academies Press.Google Scholar
  109. Niss, M. (2002). Mathematical competencies and the learning of mathematics: the Danish KOM Project. IMFUFA, Roskilde University, Denmark.Google Scholar
  110. Paine, L. (1997). Chinese teachers as mirrors of reform possibilities. In W. K. Cummings & P. G. Altbach (Eds.), The challenge of eastern Asian education (pp. 65–83). Albany: SUNY Press.Google Scholar
  111. Paine, L., & Ma, L. (1993). Teachers working together: a dialogue on organizational and cultural perspectives of Chinese teachers. International Journal of Educational Research, 19(8), 675–697.CrossRefGoogle Scholar
  112. Pelgrum, W. J., Eggen, T., & Plomp, T. (1986). Second International Mathematics Study: The implemented and attained mathematics curriculum—a comparison of eighteen countries. Washington, DC: Center for Education Statistics.Google Scholar
  113. Pepin, B. (1999). Existing models of knowledge in teaching: Developing an understanding of the Anglo/American, the French and the German scene. In B. Hudson, F. Buchberger, P. Kansanen, & H. Seel (Eds.), Didaktik/Fachdidaktik as science(s) of the teaching profession (Vol. 2(1), pp. 49–66). Lisbon: TNTEE Publications.Google Scholar
  114. Perry, N. E., Phillips, L., & Hutchinson, L. R. (2006). Preparing student teachers to support for self-regulated learning. Elementary School Journal, 106, 237–254.CrossRefGoogle Scholar
  115. Reckase, M. D. (2009). Multidimensional item response theory. New York, NY: Springer.CrossRefGoogle Scholar
  116. Ribeiro, A. J. (2008, June). The multimeanings of equation: Considerations concerning its potentialities in teaching and learning of algebra. Paper presented at the 11th International Congress on Mathematical Education, Monterrey, Mexico.Google Scholar
  117. Richardson, V. (1996). The role of attitudes and beliefs in learning to teach. In J. Sikula, T. Buttery, & E. Guyton (Eds.), Handbook of research on teacher education (2nd ed., pp. 102–119). New York: Macmillan.Google Scholar
  118. Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: the knowledge quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8, 255–281.CrossRefGoogle Scholar
  119. Rowland, T., & Ruthven, K. (Eds.). (2010). Mathematical knowledge in teaching. Mathematics education library (Vol. 50). Berlin: Springer.Google Scholar
  120. Sadler, D. R. (2012). Making competent judgements of competence. In S. Blömeke, O. Zlatkin-Troitschanskaia, Ch. Kuhn, & J. Fege (Eds.), Modeling and measuring competencies in higher education. Tasks and challenges. Rotterdam: Sense Publishers.Google Scholar
  121. Scheerens and Bosker 1997. The Foundations of Educational Effectiveness. Oxford: Pergamon.Google Scholar
  122. Schilling, S. G., Blunk, M., & Hill, H. C. (2007). Test validation and the MKT measures: generalizations and conclusions. Measurement: Interdisciplinary Research and Perspectives, 5(2–3), 118–127.CrossRefGoogle Scholar
  123. Schmidt, W. H., Blömeke, S., & Tatto, M. T. (2011). Teacher education matters. A study of the mathematics teacher preparation from six countries. New York: Teacher College Press.Google Scholar
  124. Schmidt, W., Houang, R., Cogan, L., Blömeke, S., Tatto, M. T., Hsieh, F.-J., et al. (2008). Opportunity to learn in the preparation of mathematics teachers: its structure and how it varies across six countries. ZDM—The International Journal on Mathematics Education, 40(5), 735–747.CrossRefGoogle Scholar
  125. Schmidt, W. H., McKnight, C. C., Valverde, G. A., Houang, R. T., & Wiley, D. E. (1997). Many visions, many aims: A cross-national investigation of curricular intentions in school mathematics. Dordrecht: Kluwer.Google Scholar
  126. Schoenfeld, A. H. (1994). Reflections on doing and teaching mathematics. In Mathematical thinking and problem solving. The study of mathematical thinking and learning (pp. 53–75). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  127. Schoenfeld, A. H. (2010). How we think: A theory of goal-oriented decision making and its educational applications. New York: Routledge.Google Scholar
  128. Schoenfeld, A. H., & Kilpatrick, J. (2008). Toward a theory of proficiency in teaching mathematics. In D. Tirosh & T. Wood (Eds.), International handbook of mathematics teacher education. Tools and processes in mathematics teacher education (Vol. 2, pp. 321–354). Rotterdam: Sense Publishers.Google Scholar
  129. Schön, D. (1983). The reflective practitioner, how professionals think in action. New York: Basic Books.Google Scholar
  130. Shavelson, R. (2012). An approach to testing and modeling competence. In S. Blömeke, O. Zlatkin-Troitschanskaia, Ch. Kuhn, & J. Fege (Eds.), Modeling and measuring competencies in higher education. Tasks and challenges. Rotterdam: Sense Publishers.Google Scholar
  131. Shulman, L. (1985). Paradigms and research programs in the study of teaching: A contemporary perspective. In M. C. Wittrock (Ed.), Handbook of research on teaching (3rd ed., pp. 3–36). New York, NY: Macmillan.Google Scholar
  132. Shulman, L. S. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4–14.Google Scholar
  133. Shulman, L. S. (1987). Knowledge and teaching: foundations of the new reform. Harvard Educational Research, 57, 1–22.Google Scholar
  134. Simmons, P. (1995). Gender, ethnic and socio-ethnic differences in attainment and progress: a longitudinal analysis of student achievement over 9 years. British Educational Research Journal, 21, 465–483.CrossRefGoogle Scholar
  135. Singh, K., Granville, M., & Dika, S. (2002). Mathematics and Science achievement: effects of motivation, interest and academic engagement. Journal of Educational Research, 95, 323–332.CrossRefGoogle Scholar
  136. Stark, J., & Lattuca, L. R. (1997). Shaping the college curriculum: Academic plans in action. Boston: Allyn and Bacon.Google Scholar
  137. Stigler, J. W., & Hiebert, J. (1999). The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. New York: The Free Press.Google Scholar
  138. Tatto, M. T., Lerman, S., & Novotna, J. (2010). The organization of the mathematics preparation and development of teachers: A report from the ICMI Study 15. Berlin: Springer Science and Business Media B.V.Google Scholar
  139. Tatto, M. T., Schwille, J., Senk, S., Ingvarson, L., Peck, R., & Rowley, G. (2008). Teacher education and development study in mathematics (TEDS-M): Policy, practice, and readiness to teach primary and secondary mathematics. Conceptual framework. East Lansing, MI: Teacher Education and Development International Study Center, College of Education, Michigan State University.Google Scholar
  140. Tatto, M. T., Schwille, J., Senk, S. L., Ingvarson, L., Rowley, G., Peck, R., et al. (2012). Policy, practice, and readiness to teach primary and secondary mathematics in 17 countries: Findings from the IEA Teacher Education and Development Study in Mathematics (TEDS-M). Amsterdam: IEA.Google Scholar
  141. Thomas, W. P., & Collier, V. P. (1997). School effectiveness for language minority students. National Clearinghouse for English Language Acquisition.Google Scholar
  142. Thompson, A. G. (1992). Teachers’ beliefs and conceptions: A synthesis of research. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 127–146). New York: Macmillan.Google Scholar
  143. Travers, K. J., & Westbury, I. (Eds.). (1989). The IEA study of mathematics I: Analysis of mathematics curricula. Oxford: Pergamon.Google Scholar
  144. UNESCO. (1997). International standard classification of education—ISCED. Paris: UNESCO.Google Scholar
  145. Van de Vijver, F. J. R. (1998). Towards a theory of bias and equivalence. In J. A. Harkness (Ed.), Cross-cultural survey equivalence. Zuma-Nachrichten, Spezial (Vol. 3, pp. 41–66). Mannheim: ZUMA.Google Scholar
  146. van Ewijk, R., & Sleegers, P. (2010). The effect of peer socioeconomic status on student achievement: a meta-analysis. Educational Research Review, 5, 134–150.CrossRefGoogle Scholar
  147. Vandenberg, R. J., & Lance, Ch E. (2000). A review and synthesis of the measurement invariance literature: suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4–70.CrossRefGoogle Scholar
  148. Walter, O., & Taskinen, P. (2008). Der Bildungserfolg von Jugendlichen mit Migrationshintergrund in den deutschen Ländern. In M. Prenzel, C. Artelt, J. Baumert, W. Blum, M. Hammann, E. Klieme, & R. Pekrun (Hrsg.), PISA 2006 in Deutschland. Die Kompetenzen der Jugendlichen im dritten Ländervergleich (pp. 343–374). Münster: Waxmann.Google Scholar
  149. Wang, J., & Lin, E. (2005). Comparative studies on US and Chinese mathematics learning and the implications for standards-based mathematics teaching reform. Educational Researcher, 34(5), 3–13.CrossRefGoogle Scholar
  150. Weinert, F. E. (2001). Concepts of competence: A conceptual clarification. In D. S. Rychen & L. H. Salgnik (Eds.), Defining and selecting key competencies (pp. 45–66). Göttingen: Hogrefe.Google Scholar
  151. West, K. I. (2008). Japanese high school mathematics teacher competence in real world problem solving. Paper presented at ICME-11, Topic Study Group 27 in Mexico.Google Scholar
  152. Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contemporary Educational Psychology, 25, 68–81.CrossRefGoogle Scholar
  153. Wilson, S. M., Floden, R. E., & Ferrini-Mundy, J. (2001). Teacher preparation research. Current knowledge, gaps, and recommendations. Washington: Center for the Study of Teaching and Policy.Google Scholar
  154. Wu, H. H. (1999). On the education of mathematics majors. Contemporary issues in mathematics education (Vol. 36). Berkeley, CA: MSRI.Google Scholar
  155. Wu, Z. (2010). Mathematics teacher readiness in multiculturally and linguistically diverse classrooms: A new approach of California Teacher Performance Assessment (unpublished presentation).Google Scholar
  156. Wu, Z., & Li, L. (2008). Sharpening teaching ability in K-8 mathematics classrooms. Paper presented at ICME-11, Topic Study Group 24 in Mexico.Google Scholar
  157. Zeichner, K. (1980). Myth and realities: field based experiences in pre-service teacher education. Journal of Teacher Education, 31(6), 45–55.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2012

Authors and Affiliations

  1. 1.Humboldt University of BerlinBerlinGermany
  2. 2.Coláiste Mhuire, Marino Institute of EducationDublinIreland

Personalised recommendations