Advertisement

ZDM

, Volume 43, Issue 3, pp 413–423 | Cite as

Adding intelligent assessment: a Java framework for integrating dynamic mathematical software components into interactive learning activities

  • Andreas Fest
Original Article
  • 272 Downloads

Abstract

Dynamic geometry constructions are commonly embedded into hypertext documents to create interactive exercises. In practice, this approach often constrains the possibilities of creating complex learning environments due to technical limitations. A Java-based framework for the development of interactive learning environments based on exploration laboratories containing dynamic geometry applets is presented. Dynamic geometry software (DGS) applets of different types can be integrated into the same laboratory and interact with each other. Within our framework, interactive exercises based on DGS constructions can be enriched with automated and semi-automated assessment algorithms. Students’ learning processes can be recorded using capture-and-replay software. Two sample learning environments based on the framework are presented.

Keywords

Congruencies Dynamic geometry Interactive learning activities Semi-automated assessment 

Mathematics Subject Classification (2000)

51-04 68N99 97G40 97G50 97Q70 97Q80 97R20 26-04 97U50 

Notes

Acknowledgments

This work was part of the project SAiL-MSemi automated analyses of individual learning processes in mathematics funded by the German Federal Ministry of Education and Research. The feedback module Feedback-M was developed during the same project at RWTH Aachen. The learning software Squiggle-M is also part of the project and was developed in cooperation with Maren Hiob-Viertler, PH Weingarten and Andrea Hoffkamp, TU Berlin.

References

  1. ActiveMath (2007). ActiveMath. http://www.activemath.org/. Accessed 7 Jan 2011.
  2. Baptist, P. (2004). GEONExT. http://geonext.uni-bayreuth.de. Accessed 15 Sept 2010.
  3. Bescherer, C., Kortenkamp, U., Müller, W., & Spannagel, C. (2010). Research in the field of intelligent computer-aided assessment. In A. McDougall, J. Murnane, A. Jones, & N. Reynolds (Eds.), Researching IT in education: Theory, practice and future directions. London: Routledge.Google Scholar
  4. Bescherer, C., & Spannagel, C. (2009). Design patterns for the use of technology in introductory mathematics tutorials. In A. Tatnall & A. Jones (Eds.), Education and technology for a better world (pp. 427–435). Berlin: Springer.CrossRefGoogle Scholar
  5. Cohen, V. B. (1985). A reexamination of feedback in computer-based instruction: Implications for instructional design. Educational Technology, 25(1), 33–37.Google Scholar
  6. Egido, S., Hendriks, M., Kortenkamp, U., Kreis, Y., & Marquès, D. (2010). I2G intergeo common file format final version. The Intergeo Consortium. http://i2geo.net/files/D3.10-Common-File-Format.pdf. Accessed 15 Sept 2010.
  7. Elschenbroich, H.-J. (2004). Dynamische Geometrie. http://www.dynamische-geometrie.de. Accessed 20 June 2010.
  8. Fest, A. (2010). Creating interactive user feedback in DGS using scripting interfaces. Acta Didactica Napocencia, 3(2), 79–88.Google Scholar
  9. Fest, A., Hiob-Viertler, M., & Hoffkamp, A. (2010). An interactive learning activity for the formation of the concept of function based on representational transfer. In C. Sarvari & Z. Lavicza (Eds.), Proceedings of the CADGME 2010, Hluboká nad Vltavou (in press).Google Scholar
  10. Fuchs, K., & Hohenwarter, M. (2005). Combination of dynamic geometry, algebra and calculus in the software system GeoGebra. In: Computer algebra systems and dynamic geometry systems in mathematics teaching conference 2004, Pecs, Hungary.Google Scholar
  11. Geogebra (2010). GeoGebra. http://www.geogebra.org/. Accessed 15 Sept 2010.
  12. Gerhäuser, M., Valentin, B., & Wassermann, A. (2009). JSXGraph—dynamic geometry with JavaScript. In C. Sarvari & Z. Lavicza (Eds.), Proceedings of the CADGME 2009, Hardenberg (in press).Google Scholar
  13. Goldenberg, P., Lewis, P. G., & O’Keefe, J. (1991). Dynamic representation and the development of an understanding of function. In E. Harel (Ed.), The concept of function: Aspects of epistemology and pedagogy (Vol. 25). Washington: MAA.Google Scholar
  14. Gosling, J., & Yellin, F. (1996). The Java(TM) application programming interface. Window toolkit and applets (Vol. 2). Reading: Addison-Wesley.Google Scholar
  15. Herding, D., Zimmermann, M., Bescherer, C., & Schröder, U. (2010). Entwicklung eines Frameworks für semi-automatisches Feedback zur Unterstützung bei Lernprozessen. In Proceedings of the DELFI 2010, Duisburg (in press).Google Scholar
  16. Hiob-Viertler, M., & Fest, A. (2010). Entwicklung einer mathematischen Experimentierumgebung im Bereich der Zuordnungen und Funktionen. In Beiträge zum Mathematikunterricht 2010. Münster: WTM.Google Scholar
  17. Hocquenghem, S. (1996). Évolution de La notion de figure géométrique depuis les imagiciels jusqu’à GeoplanW. Université d’été sur l’intégration des outils informatiques dans l’enseignement, IREM de Rennes.Google Scholar
  18. Hocquenghem, M.-L., Kotecki, F., & Séres, P. (2010). Geoplan/Geospace. http://www.aid-creem.org. Accessed 15 Sept 2010.
  19. Hoffkamp, A. (2009). Enhancing functional thinking using the computer for representational transfer. In V. Durand-Guerri, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the sixth congress of the European society for research in mathematics education. Lyon: Institute Nationale De Recherche Pédagogique.Google Scholar
  20. Hoffkamp, A. (2010). The use of interactive visualizations to foster the understanding of concepts of calculus—design principles and empirical results. In C. Laborde & U. Kortenkamp (Eds.), Proceedings of the i2geo 2010, Hluboká nad Vltavou.Google Scholar
  21. Intergeo (2010). I2geo Intergeo. http://www.i2geo.net. Accessed 20 June 2010.
  22. Jeschke, S., Richter, T., & Seiler, R. (2005). Mathematics in virtual knowledge spaces: User adaptation by intelligent assistants. In A. Méndez-Vilas, B. González-Pereira, J. Mesa González, & J. A. Mesa González (Eds.), Recent research developments in learning technologies. Badajoz: FORMATEX.Google Scholar
  23. JNLP (2001). Java(TM) network launching protocol and API specification (JSR-56): Version 1.5. Java Software: A Division of Sun Microsystems, Inc. Accessed 5 Jan 2011.Google Scholar
  24. Kortenkamp, U. (2006). Cinderella software license and terms of use. http://doc.cinderella.de/tiki-index.php?page=Software+License. Accessed 15 Sept 2010.
  25. Kortenkamp, U. (2009). I2G API specification. The Intergeo Consortium. http://i2geo.net/files/D3.5-API-specification.pdf. Accessed 15 Sept 2010.
  26. Melis, E., Goguadze, G., Homik, M., Libbrecht, P., Ullrich, C., & Winterstein, S. (2006). Semantic-aware components and services of active-math. British Journal of Educational Technology, 37(3), 405–423.CrossRefGoogle Scholar
  27. Mumie (2009). Mumie—online math education. http://www.mumie.net/. Accessed 7 Jan 2011.
  28. Park, O.-C., & Gittleman, S. S. (1992). Selective use of animation and feedback in computer-based instruction. Educational Technology Research and Development, 40(4), 27–28.CrossRefGoogle Scholar
  29. Pridemore, D. R., & Klein, J. D. (1991). Control of feedback in computer-assisted instruction. Educational Technology Research and Development, 39(4), 27–32.CrossRefGoogle Scholar
  30. Richter-Gebert, J. (2009). Mathe vital. http://www.mathe-vital.de. Accessed 20 June 2010.
  31. Richter-Gebert, J., & Kortenkamp, U. (1999). The interactive geometry software Cinderella. Berlin: Springer.Google Scholar
  32. Schroeder, U., & Spannagel, C. (2006). Supporting the active learning process. International Journal on E-Learning, 5, 245–264.Google Scholar
  33. Schulmeister, R. (2007). Grundlagen hypermedialer Lernsysteme (4th ed.). München: Oldenbourg.CrossRefGoogle Scholar
  34. Sesamath (2010). Mathenpoche. L’association Sésamath. http://mathenpoche.sesameth.net. Accessed 15 Sept 2010.
  35. Spannagel, C., Gläser-Zikuda, M., & Schroeder, U. (2005). Application of qualitative content analysis in user-program interaction research. Forum: Qualitative Social Research, 6. http://www.qualitative-research.net/index.php/fqs/article/view/469. Accessed 20 June 2010.
  36. Spannagel, C., & Kortenkamp, U. (2009). Demonstrating, guiding, and analyzing processes in dynamic geometry systems. In C. Bardini, C. Fortin, A. Oldknow, & D. Vagost (Eds.), Proceedings of the 9th international conference on technology in mathematics teaching (ICTMT-9), Metz.Google Scholar
  37. VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education, 16(3), 227–265.Google Scholar
  38. Vanroyen, J.-P., & Ostenne, E. (2004). TracenPoche. http://tracenpoche.sesamath.net. Accessed 15 Sept 2010.
  39. Xiao, G. (1999). WIMS—a server for interactive mathematics on the Internet. http://wims.unice.fr/. Accessed 7 Jan 2011 (online).

Copyright information

© FIZ Karlsruhe 2011

Authors and Affiliations

  1. 1.University of Education LudwigsburgLudwigsburgGermany

Personalised recommendations