Advertisement

ZDM

, Volume 43, Issue 3, pp 399–411 | Cite as

Mathematics teacher education advanced methods: an example in dynamic geometry

Original Article

Abstract

We present a research work about an innovative national teacher training program in France: the Pairform@nce program, designed to sustain ICT integration. We study here training for secondary school teachers, whose objective is to foster the development of an inquiry-based approach in the teaching of mathematics, using investigative potentialities of dynamic geometry environments. We adopt the theoretical background of the documentational approach to didactics. We focus on the interactions between teachers and resources: teachers’ professional knowledge influences these interactions, which at the same time yield knowledge evolutions, a twofold process that we conceptualise as a documentational genesis. We followed in particular the work of a team of trainees; drawing on the data collected, we analyse their professional development, related with the training. We observe intertwined evolutions and stabilities, consistent with ongoing geneses.

Keywords

Community of practice Documentational approach Dynamic geometry environment (DGE) Inquiry-based learning and teaching Mathematics teacher education Training path 

References

  1. Adler, J. (2000). Conceptualising resources as a theme for teacher education. Journal of Mathematics Teacher Education, 3, 205–224.CrossRefGoogle Scholar
  2. Allen, R., Wallace, M., Cederberg, J., & Pearson, D. (1996). Teachers empowering teachers: Vertically-integrated, inquiry-based geometry in school classrooms. Mathematics Teacher, 90(3), 254–255.Google Scholar
  3. Artigue, M. (1998). Teacher training as a key issue for the integration of computer technologies. In D. Johnson & D. Tinsley (Eds.), Secondary school mathematics in the world of communication technologies: Learning, teaching and the curriculum (pp. 121–129). London: Chapman and Hall.Google Scholar
  4. Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274.CrossRefGoogle Scholar
  5. Falcade, R., Laborde, C., & Mariotti, M. A. (2007). Approaching functions: Cabri tools as instruments of semiotic mediation. Educational Studies in Mathematics, 66(3), 317–333.CrossRefGoogle Scholar
  6. Fuglestad, A. B. (2007). Developing tasks and teaching with ICT in mathematics in an inquiry community. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the Fifth European Conference on Research on Mathematics Education. ERME. http://ermeweb.free.fr/CERME%205/WG9/9_Fuglestad.pdf.
  7. Gueudet, G., Soury-Lavergne, S., & Trouche, L. (2009). Soutenir l’intégration des TICE: quels assistants méthodologiques pour le développement de la documentation collective des professeurs? Exemples du SFoDEM et du dispositif Pairform@nce. In C. Ouvrier-Buffet & M.-J. Perrin-Glorian (Dir.), Approches plurielles en didactique des mathématiques (pp. 161–173). Paris: Laboratoire de didactique André Revuz, Université Paris Diderot.Google Scholar
  8. Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for teachers? Educational Studies in Mathematics, 71(3), 199–218.CrossRefGoogle Scholar
  9. Gueudet, G., & Trouche, L. (2010). Teaching resources and teachers professional development: Towards a documentational approach of didactics. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth European Conference on Research on Mathematics Education (pp. 1359–1368). INRP. http://www.inrp.fr/editions/cerme6.
  10. Gueudet, G., & Trouche, L. (2011). Teachers’ work with resources: Documentational geneses and professional geneses. In Gueudet, G., Pepin, B., & Trouche, L. (Eds.), From text to ‘lived’ resources: Mathematics curriculum material and teacher development. New York: Springer (to appear).Google Scholar
  11. Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: The case of calculators. International Journal of Computers for Mathematical Learning, 3, 195–227.CrossRefGoogle Scholar
  12. Guin, D., & Trouche, L. (2002). Mastering by the teacher of the instrumental genesis in CAS environments: Necessity of instrumental orchestrations. ZDM—The International Journal on Mathematics Education, 34(5), 204–211.CrossRefGoogle Scholar
  13. Hennessy, S., Ruthven, K., & Brindley, S. (2005). Teacher perspectives on integrating ICT into subject teaching: Commitment, constraints, caution and change. Journal of curriculum studies, 37(2), 155–192.CrossRefGoogle Scholar
  14. Hoffkamp, A. (2010). The use of interactive visualisations to foster the understanding of concepts of calculus—Design principles and empirical results. Presentation at the I2GEO 2010 conference. http://cermat.org/i2geo2010/downloads/files/I2GEO2010-Hoffkamp.pdf.
  15. Joubert, M., Back, J., De Geest, E., Hirst, C., & Sutherland, R. (2010). Professional development for teachers of mathematics: Opportunities and change. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth European Conference on Research on Mathematics Education (pp. 1761–1770). INRP. http://www.inrp.fr/editions/cerme6.
  16. Kortenkamp, U., Blessing, A. M., Dohrmann, C., Kreis, Y., Libbrecht, P., & Mercat, C. (2010). Interoperable interactive geometry for Europe—First technological and educational results and future challenges of the Intergeo project. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth European Conference on Research on Mathematics Education (pp. 1150–1160). INRP. http://www.inrp.fr/editions/cerme6.
  17. Krainer, K., & Wood, T. (Eds.). (2008). Participants in mathematics teachers education: Individuals, teams, communities and networks (Vol. 3). Rotterdam/Taipei: Sense Publishers.Google Scholar
  18. Laborde, C. (2001). The use of new technologies as a vehicle for restructuring teachers’ mathematics. In T. Conney & F. L. Lin (Eds.), Making sense of mathematics teacher education (pp. 87–109). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  19. Laborde, C., & Laborde, J.-M. (2008). The development of a dynamical geometry environment. In K. Heid & G. Blume (Eds.), Research on technology and the learning and teaching of mathematics, Vol. 2: Cases and perspectives (pp. 31–52). Charlotte: Information Age Publishing.Google Scholar
  20. Lagrange, J.-B., Artigue, M., Laborde, C., & Trouche, L. (2003). Technology and mathematics education: A multidimensional study of the evolution of research and innovation. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Second international handbook of mathematics education (pp. 239–271). Dordrecht: Kluwer Academic Publishers.Google Scholar
  21. Leung, A. (2003). Dynamic geometry and the theory of variation. In N. A. Pateman, B. J. Dougherty, & J. T. Zilliox (Eds.), Proceedings of the 27th PME International Conference (Vol. 3, pp. 197–204).Google Scholar
  22. Pédauque, R. T. (coll.). (2006). Le document à la lumière du numérique. Caen: C & F éditions.Google Scholar
  23. Rabardel, P., & Bourmaud, G. (2003). From computer to instrument system: A developmental perspective. In P. Rabardel & Y. Waern (Eds.), Special Issue “From Computer Artefact to Mediated Activity”, Part 1: Organisational Issues. Interacting with Computers, 15(5), 665–691.Google Scholar
  24. Restrepo, A. (2007). L’instrumentation du déplacement dans un environnement de géométrie dynamique. In I. Bloch & F. Conne (dir.), Nouvelles perspectives en didactique des mathématiques. CD-Rom, La Pensée sauvage.Google Scholar
  25. Ruthven, K. (2010). An investigative lesson with dynamic geometry: A case study of key structuring features of technology integration in classroom practice. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (eds.), Proceedings of the Sixth European Conference on Research on Mathematics Education (pp. 369–1378). INRP. http://www.inrp.fr/editions/cerme6.
  26. Trgalova, J., Jahn, A. P., & Soury-Lavergne, S. (2010). Quality process for dynamic geometry resources: The Intergeo project. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth European Conference on Research on Mathematics Education (pp. 1161–1170). INRP. http://www.inrp.fr/editions/cerme6.
  27. Trouche, L., & Drijvers, P. (2010). Handheld technology for mathematics education, flashback to the future. ZDM—The International Journal on Mathematics Education. Online: http://www.springerlink.com/content/68n07260752h5260/.
  28. Trouche, L., & Guin, D. (2005). Distance training, a key mode to support teachers in the integration of ICT? In M. Bosch (Ed.), Proceedings of the Fourth European Conference on Research on Mathematics Education (pp. 1020–1029). FUNDEMI IQS-Universitat Ramon Llull. http://ermeweb.free.fr/CERME4/CERME4_WG9.pdf.
  29. Vergnaud, G. (1998). Toward a cognitive theory of practice. In A. Sierpinska & J. Kilpatrick (Eds.), Mathematics education as a research domain: A search for identity (pp. 227–241). Dordrecht: Kluwer Academic Publishers.Google Scholar
  30. Vérillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrument activity. European Journal of Psychology in Education, 9(3), 77–101.CrossRefGoogle Scholar
  31. Vygotski, L. (1978). Mind in society. Cambridge: Harvard University Press.Google Scholar
  32. Wenger, E. (1998). Communities of practice. Learning, meaning, identity. New York: Cambridge University Press.Google Scholar

Copyright information

© FIZ Karlsruhe 2011

Authors and Affiliations

  1. 1.CREAD, IUFM Bretagne UBORennes CedexFrance
  2. 2.EducTice-ENSLLyonFrance

Personalised recommendations