, Volume 43, Issue 2, pp 257–267 | Cite as

Examining the role of examples in proving processes through a cognitive lens: the case of triangular numbers

  • B. Pedemonte
  • O. Buchbinder
Original Article


In this paper, we analyze the role of examples in the proving process. The context chosen for this study was finding a general rule for triangular numbers. The aim of this paper is to show that examples are effective for the construction of a proof when they allow cognitive unity and structural continuity between argumentation and proof. Continuity in the structure is possible if the inductive argumentation is based on process pattern generalization (PPG), but this is not the case if a generalization is made on the results. Moreover, the PPG favors the development of generic examples that support cognitive unity and structural continuity between the argumentation and proof. The cognitive analysis presented in this paper is performed through Toulmin’s model.


Inductive Argumentation Resolution Process Structurant Argumentation Mathematical Induction Structural Continuity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alcock, L. (2004). Uses of example objects in proving. In M. J. Hoines & A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 17–24), Bergen, Norway.Google Scholar
  2. Balacheff, N. (1988). Une étude des processus de preuve en mathématiques chez les élèves de Collège. Thèse d’état. Université Joseph Fourier, Grenoble.Google Scholar
  3. Bills, L., Dreifus, T., Mason, J., Tsamir, P., Watson, A., & Zaslavsky, O. (2006). Exemplification in mathematics education. In J. Novotna, H. Moraova, M. Kratka, & N. Stehlikova (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 126–154). Prague, Czech Republic: PME.Google Scholar
  4. Boero, P., Garuti, R., & Mariotti, M. A. (1996). Some dynamic mental processes underlying producing and proving conjectures. In L. Puig & A. Gutierrez (Eds.), Proceedings of the Twentieth Conference of the International Group for the Psychology of Mathematics Education PMEXX (Vol. 2, pp. 121–128), Valencia.Google Scholar
  5. Dahlberg, R., & Houseman, D. (1997). Facilitating learning events through example generation. Educational Studies in Mathematics, 33, 283–299.CrossRefGoogle Scholar
  6. Garuti, R., Boero, P., & Lemut, E. (1998). Cognitive unity of theorems and difficulty of proof. In Proceedings of the International Group for the Psychology of Mathematics Education PME-XXII (Vol. 2, pp. 345–352), Stellenbosch.Google Scholar
  7. Garuti, R., Boero, P., Lemut, E., & Mariotti, M. A. (1996). Challenging the traditional school approach to theorems. In Proceedings of the International Group for the Psychology of Mathematics Education PME-XX (Vol. 2, pp. 113–120), Valencia.Google Scholar
  8. Goldenberg, P., & Mason, J. (2008). Shedding light on and with example spaces. Educational Studies in Mathematics, 69(2), 183–194.CrossRefGoogle Scholar
  9. Harel, G. (2001). The development of mathematical induction as a proof scheme: A model for DNR-based instruction. In S. Campbell & R. Zazkis (Eds.), Learning and teaching number theory: Research in cognition and instruction (pp. 185–212). Norwood, NJ: Ablex Publishing Corporation.Google Scholar
  10. Harel, G. (2008). Mathematical induction: Cognitive and instructional considerations. In M. P. Carlson & C. Rasmussen (Eds.), Making the connection: Research and teaching in undergraduate mathematics education. Note 73 (pp. 111–124). Washington, DC: Mathematical Association of America.Google Scholar
  11. Healy, L., & Hoyles, C. (1999). Visual and symbolic reasoning in mathematics: Making connections with computers. Mathematical Teaching and Learning, 1, 59–84.CrossRefGoogle Scholar
  12. Inglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66, 3–21.CrossRefGoogle Scholar
  13. Knipping, C. (2008). A method for revealing structures of argumentations in classroom proving processes. ZDM—The International Journal on Mathematics Education, 40(3), 427–441.Google Scholar
  14. Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229–269). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  15. Lannin, J. K., Barker, D. D., & Townsend, B. E. (2006). Recursive and explicit rules: How can we build student algebraic understanding? Journal of Mathematical Behaviour, 25, 299–317.CrossRefGoogle Scholar
  16. Mariotti, M. A. (2001). Introduction to proof: The mediation of a dynamic software environment (special issue). Educational Studies in Mathematics, 44(1–2), 25–53.Google Scholar
  17. Martinez, M., & Pedemonte, B. (2011) Relationship between inductive arithmetic argumentation and deductive algebraic proof. Journal for Research in Mathematics Education (under revision).Google Scholar
  18. Mason, J., & Pimm, D. (1984). Generic examples: Seeing the general in the particular. Educational Studies in Mathematics, 15, 227–289.CrossRefGoogle Scholar
  19. National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: NCTM.Google Scholar
  20. Pedemonte, B. (2005). Quelques outils pour l’analyse cognitive du rapport entre argumentation et démonstration. Recherche en didactique des mathématiques, 25(3), 313–348.Google Scholar
  21. Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66, 23–41.CrossRefGoogle Scholar
  22. Pedemonte, B. (2008). Argumentation and algebraic proof. ZDM—The International Journal on Mathematics Education, 40(3), 385–400.CrossRefGoogle Scholar
  23. Plantin, C. (1990). Essais sur l’argumentation, Introduction à l’étude linguistique de la parole argumentative. Argumentation et sciences du langage. Paris: Kimé. ISBN 2-908212-04-8.Google Scholar
  24. Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press.Google Scholar
  25. Toulmin, S. E. (1993). Les usages de l’argumentation [P. De Brabanter (Trans.)]. Paris: Presse Universitaire de France.Google Scholar
  26. Tsamir, P., Tirosh, D., & Levinson, E. (2008). Intuitive non examples: The case of triangles. Educational Studies in Mathematics, 69(2), 81–95.CrossRefGoogle Scholar
  27. Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematical Education in Science and Technology, 14, 293–305.CrossRefGoogle Scholar
  28. Watson, A., & Mason, J. (2005). Mathematics as a constructive activity: Learners generating examples. Mahwah, NJ: Erlbaum.Google Scholar
  29. Wood, T. (1999). Creating a context for argument in mathematics class. Journal for Research in Mathematics Education, 30(2), 171–191.CrossRefGoogle Scholar
  30. Yackel, E. (2001). Explanation, justification and argumentation in mathematics classrooms. In M. Van den Heuvel-Panhuizen (Ed.), Proceedings of the 25 th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 33–40), Utrecht, Olanda.Google Scholar
  31. Yackel, E., & Rasmussen, C. (2002). Beliefs and norms in the mathematics classroom. In G. Toerner, E. Pehkonen, & G. Leder (Eds.), Mathematical beliefs and implications for teaching and learning. Dordrecht, The Netherlands: Kluwer.Google Scholar

Copyright information

© FIZ Karlsruhe 2011

Authors and Affiliations

  1. 1.DiDiMa srl, ITD-CNR GenoaGenoaItaly
  2. 2.Department of Education in Technology and ScienceTechnion Israel Institute of TechnologyTechnionIsrael

Personalised recommendations