, Volume 42, Issue 6, pp 527–539 | Cite as

Low numeracy and dyscalculia: identification and intervention

  • Brian ButterworthEmail author
  • Diana Laurillard
Original Article


One important factor in the failure to learn arithmetic in the normal way is an endogenous core deficit in the sense of number. This has been associated with low numeracy in general (e.g. Halberda et al. in Nature 455:665–668, 2008) and with dyscalculia more specifically (e.g. Landerl et al. in Cognition 93:99–125, 2004). Here, we describe straightforward ways of identifying this deficit, and offer some new ways of strengthening the sense of number using learning technologies.


Specific Language Impairment Dyslexia Digital Game Special Educational Need Digital Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Agrillo, C., Dadda, M., Serena, G., & Bisazza, A. (2009). Use of number by fish. PLoS One, 4(3), e4786.CrossRefGoogle Scholar
  2. Alarcon, M., Defries, J., Gillis Light, J., & Pennington, B. (1997). A twin study of mathematics disability. Journal of Learning Disabilities, 30, 617–623.CrossRefGoogle Scholar
  3. Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience, 9, 278–291.CrossRefGoogle Scholar
  4. Ansari, D., & Karmiloff-Smith, A. (2002). Atypical trajectories of number development: A neuroconstructivist perspective. Trends in Cognitive Sciences, 6(12), 511–516.CrossRefGoogle Scholar
  5. Bruandet, M., Molko, N., Cohen, L., & Dehaene, S. (2004). A cognitive characterization of dyscalculia in Turner syndrome. Neuropsychologia, 42, 288–298.CrossRefGoogle Scholar
  6. Butterworth, B. (2000). The mathematical brain. London: Macmillan.Google Scholar
  7. Butterworth, B. (2001). What makes a prodigy? Nature Neuroscience, 4(1), 11–12.CrossRefGoogle Scholar
  8. Butterworth, B. (2005a). Developmental dyscalculia. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 455–467). Hove: Psychology Press.Google Scholar
  9. Butterworth, B. (2005b). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46(1), 3–18.CrossRefGoogle Scholar
  10. Butterworth, B. (2006). Mathematical expertise. In K. A. Ericsson, N. Charness, P. J. Feltovich, & R. R. Hoffmann (Eds.), Cambridge handbook of expertise and expert performance (pp. 553–568). Cambridge: Cambridge University Press.Google Scholar
  11. Butterworth, B., Granà, A., Piazza, M., Girelli, L., Price, C., & Skuse, D. (1999). Language and the origins of number skills: Karyotypic differences in Turner’s syndrome. Brain and Language, 69, 486–488.Google Scholar
  12. Butterworth, B., & Reigosa Crespo, V. (2007). Information processing deficits in dyscalculia. In D. B. Berch & M. M. M. Mazzocco (Eds.), Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities (pp. 65–81). Baltimore, MD: Paul H Brookes Publishing Co.Google Scholar
  13. Butterworth, B., & Yeo, D. (2004). Dyscalculia guidance. London: nferNelson.Google Scholar
  14. Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. Public Library of Science Biology, 4(5), e125.Google Scholar
  15. Cappelletti, M., Barth, H., Fregni, F., Spelke, E. S., & Pascuale-Leone, A. (2007). rTMS over the intraparietal sulcus disrupts numerosity processing. Experimental Brain Research, 179, 631–642.CrossRefGoogle Scholar
  16. Cappelletti, M., Butterworth, B., & Kopelman, M. (2001). Spared numerical abilities in a case of semantic dementia. Neuropsychologia, 39, 1224–1239.CrossRefGoogle Scholar
  17. Cappelletti, M., Kopelman, M., & Butterworth, B. (2002). Why semantic dementia drives you the dogs (but not to the horses): A theoretical account. Cognitive Neuropsychology, 19(6), 483–503.CrossRefGoogle Scholar
  18. Castelli, F., Glaser, D. E., & Butterworth, B. (2006). Discrete and analogue quantity processing in the parietal lobe: A functional MRI study. Proceedings of the National Academy of Science, 103(12), 4693–4698.CrossRefGoogle Scholar
  19. Cipolotti, L., Butterworth, B., & Denes, G. (1991). A specific deficit for numbers in a case of dense acalculia. Brain, 114, 2619–2637.CrossRefGoogle Scholar
  20. Cohen Kadosh, R., Cohen Kadosh, K., Schuhmann, T., Kaas, A., Goebel, R., Henik, A., et al. (2007). Virtual dyscalculia induced by parietal-lobe TMS impairs automatic magnitude processing. Current Biology, 17, 1–5.CrossRefGoogle Scholar
  21. Cowan, R., Donlan, C., Newton, E., & Lloyd, D. (2005). Number skills and knowledge in children with specific language impairment. Journal of Educational Psychology, 97, 732–744.CrossRefGoogle Scholar
  22. Dehaene, S., Molko, N., & Cohen, L. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14, 218–224.CrossRefGoogle Scholar
  23. Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284(5416), 970–974.CrossRefGoogle Scholar
  24. Donlan, C., Bishop, D. V. M., & Hitch, G. J. (1998). Magnitude comparisons by children with specific language impairments: Evidence of unimpaired symbolic processing. International Journal of Language & Communication Disorders, 33, 149–160.CrossRefGoogle Scholar
  25. Dowker, A. (Ed.). (2008). Mathematical difficulties: Psychology and intervention. London: Academic Press.Google Scholar
  26. Dowker, A. (2009). What works for children with mathematical difficulties? The effectiveness of intervention schemes. London: Department for Children, Schools and Familieso. Document Number.Google Scholar
  27. Eden, G., Jones, K., Cappell, K., Gareau, L., Wood, F., Zeffiro, T., et al. (2004). Neural changes following remediation in adult developmental dyslexia. Neuron, 44, 411–422.CrossRefGoogle Scholar
  28. Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314.CrossRefGoogle Scholar
  29. Gathercole, S. (1995). Nonword repetition: More than just a phonological output task. Cognitive Neuropsychology, 12(8), 857–861.CrossRefGoogle Scholar
  30. Gathercole, S. E., & Pickering, S. J. (2000). Working memory deficits in children with low achievements in the national curriculum at 7 years of age. British Journal of Educational Psychology, 70(2), 177–194.CrossRefGoogle Scholar
  31. Geary, D. C. (1993). Mathematical disabilities: Cognition, neuropsychological and genetic components. Psychological Bulletin, 114, 345–362.CrossRefGoogle Scholar
  32. Geary, D. C., Bailey, D. H., Littlefield, A., Wood, P., Hoard, M. K., & Nugent, L. (2009). First-grade predictors of mathematical learning disability: A latent class trajectory analysis. Cognitive Development, 24, 411–429.Google Scholar
  33. Griffin, S., Case, R., & Siegler, R. (1994). Rightstart: Providing the central conceptual prerequisites for first formal learning of arithmetic to students at risk for school failure. In K. McGilly (Ed.), Classroom learning: Integrating cognitive theory and classroom practice (pp. 25–50). Boston: MIT Press.Google Scholar
  34. Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665–668.CrossRefGoogle Scholar
  35. Healy, L., & Kynigos, C. (2010). Charting the microworld territory over time: Design and construction in mathematics education. ZDM Mathematics Education, 42, 63–76.CrossRefGoogle Scholar
  36. Henschen, S. E. (1920). Klinische und Anatomische Beitrage zu Pathologie des Gehirns. Stockholm: Nordiska Bokhandeln.Google Scholar
  37. Isaacs, E. B., Edmonds, C. J., Lucas, A., & Gadian, D. G. (2001). Calculation difficulties in children of very low birthweight: A neural correlate. Brain, 124, 1701–1707.CrossRefGoogle Scholar
  38. Isaacs, E. B., Gadian, D. G., Sabatini, S., Chong, W. K., Quinn, B. T., Fischl, B. R., et al. (2008). The effect of early human diet on caudate volumes and IQ. Pediatric Research, 63(3), 308–314.CrossRefGoogle Scholar
  39. Iuculano, T., Tang, J., Hall, C., & Butterworth, B. (2008). Core information processing deficits in developmental dyscalculia and low numeracy. Developmental Science, 11(5), 669–680.CrossRefGoogle Scholar
  40. Koontz, K. L., & Berch, D. B. (1996). Identifying simple numerical stimuli: Processing inefficiencies exhibited by arithmetic learning disabled children. Mathematical Cognition, 2(1), 1–23.CrossRefGoogle Scholar
  41. Kovas, Y., Haworth, C., Dale, P., & Plomin, R. (2007). The genetic and environmental origins of learning abilities and disabilities in the early school years. Monograph of the Society for Research in Child Development, 72(3), 1–144.CrossRefGoogle Scholar
  42. Kulik, J. (2003). Effects of using instructional technology in elementary and secondary schools: What controlled evaluation studies say. SRI Project Number P10446.001: SRI International.Google Scholar
  43. Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9 year old students. Cognition, 93, 99–125.CrossRefGoogle Scholar
  44. Mariotti, M. A. (2009). Artifacts and signs after a Vygotskian perspective: The role of the teacher. ZDM Mathematics Education, 41, 427–440.CrossRefGoogle Scholar
  45. McLean, J. F., & Hitch, G. J. (1999). Working memory impairments in children with specific arithmetical difficulties. Journal of Experimental Child Psychology, 74, 240–260.CrossRefGoogle Scholar
  46. Molko, N., Cachia, A., Rivière, D., Mangin, J.-F., Bruandet, M., Le Bihan, D., et al. (2003). Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia of genetic origin. Neuron, 40, 847–858.CrossRefGoogle Scholar
  47. Moyer, R. S., & Landauer, T. K. (1967). Time required for judgments of numerical inequality. Nature, 215, 1519–1520.CrossRefGoogle Scholar
  48. Mussolin, C., De Volder, A., Grandin, C., Schlögel, X., Nassogne, M.-C., & Noël, M.-P. (2009). Neural correlates of symbolic number comparison in developmental dyscalculia. Journal of Cognitive Neuroscience, 22(5), 860–874.CrossRefGoogle Scholar
  49. Nation, K., Adams, J. W., Bowyer-Crane, C. A., & Snowling, M. J. (1999). Working memory deficits in poor comprehenders reflect underlying language impairments. Journal of Experimental Child Psychology, 73(2), 139–158.CrossRefGoogle Scholar
  50. Noël, M. P., Seron, X., & Trovarelli, F. (2004). Working memory as a predictor of addition skills and addition strategies in children. Current Psychology of Cognition, 22, 3–25.Google Scholar
  51. Noss, R., & Hoyles, C. (1996). Windows on mathematical meaning: Learning cultures and computers. Dordrecht: Kluwer.Google Scholar
  52. Pesenti, M., Zago, L., Crivello, F., Mellet, E., Samson, D., Duroux, B., et al. (2001). Mental calculation expertise in a prodigy is sustained by right prefrontal and medial-temporal areas. Nature Neuroscience, 4(1), 103–107.CrossRefGoogle Scholar
  53. Piazza, M., Mechelli, A., Price, C. J., & Butterworth, B. (2006). Exact and approximate judgements of visual and auditory numerosity: An fMRI study. Brain Research, 1106, 177–188.CrossRefGoogle Scholar
  54. Pinel, P., Dehaene, S., Rivière, D., & Le Bihan, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. NeuroImage, 14, 1013–1026.CrossRefGoogle Scholar
  55. Price, G. R., Holloway, I., Räsänen, P., Vesterinen, M., & Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology, 17(24), R1042–R1043.CrossRefGoogle Scholar
  56. Rotzer, S., Kucian, K., Martin, E., Aster, M.v., Klaver, P., & Loenneker, T. (2008). Optimized voxel-based morphometry in children with developmental dyscalculia. NeuroImage, 39(1), 417–422.CrossRefGoogle Scholar
  57. Rusconi, E., Walsh, V., & Butterworth, B. (2005). Dexterity with numbers: rTMS over left angular gyrus disrupts finger gnosis and number processing. Neuropsychologia, 43(11), 1609–1624.CrossRefGoogle Scholar
  58. Rykhlevskaia, E., Uddin, L. Q., Kondos, L., & Menon, V. (2009). Neuroanatomical correlates of developmental dyscalculia: Combined evidence from morphometry and tractography. Frontiers in Human Neuroscience, 3(51), 1–13.Google Scholar
  59. Shalev, R. S., Manor, O., & Gross-Tsur, V. (1997). Neuropsychological aspects of developmental dyscalculia. Mathematical Cognition, 3(2), 105–120.CrossRefGoogle Scholar
  60. Shalev, R. S., Manor, O., Kerem, B., Ayali, M., Badichi, N., Friedlander, Y., et al. (2001). Developmental dyscalculia is a familial learning disability. Journal of Learning Disabilities, 34(1), 59–65.CrossRefGoogle Scholar
  61. Slavin, R. E., & Lake, C. (2008). Effective programs in elementary mathematics: A best-evidence synthesis. Review of Educational Research, 78(3), 427–515.CrossRefGoogle Scholar
  62. Tang, J., Critchley, H. D., Glaser, D., Dolan, R. J., & Butterworth, B. (2006). Imaging informational conflict: An fMRI study of numerical stroop. Journal of Cognitive Neuroscience, 18, 2049–2062.CrossRefGoogle Scholar
  63. Varma, S., McCandliss, B. D., & Schwartz, D. L. (2008). Scientific and pragmatic challenges for bridging education and neuroscience. Educational Researcher, 37(3), 140–152.CrossRefGoogle Scholar
  64. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.Google Scholar
  65. Warrington, E. K., & James, M. (1967). Tachistoscopic number estimation in patients with unilateral lesions. Journal of Neurology, Neurosurgery and Psychiatry, 30, 468–474.CrossRefGoogle Scholar
  66. Wilson, A., Dehaene, S., Pinel, P., Revkin, S., Cohen, L., & Cohen, D. (2006). Principles underlying the design of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2, 19. doi: 10.1186/1744-9081-2-19.CrossRefGoogle Scholar
  67. Wilson, A., Revkin, S., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2, 20. doi: 10.1186/1744-9081-2-20.
  68. Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation. NeuroImage, 13(2), 314–327.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2010

Authors and Affiliations

  1. 1.Institute for Cognitive NeuroscienceUniversity College LondonLondonUK
  2. 2.Centre for Educational NeuroscienceLondonUK
  3. 3.London Knowledge LabInstitute of Education University of LondonLondonUK

Personalised recommendations