, Volume 42, Issue 6, pp 579–590 | Cite as

Cognitive resource allocation for neural activity underlying mathematical cognition: a multi-method study

  • S. Landgraf
  • E. van der Meer
  • F. KruegerEmail author
Original Article


Mathematical cognition requires the allocation of computation resources, where math-specific computations are assumed to take place in the parietal cortex and math-supportive computations in the frontal cortex. Because the pupil dilation has a higher temporal resolution than functional MRI (fMRI), the study investigated to which extent the pupil dilation can help to identify cognitive resource allocation for neural activity underlying math-specific and math-supportive cognition. Combining pupillometry and event-related fMRI, we administered a multiplication verification paradigm to 15 healthy participants asking them to solve easy, moderate, and difficult multiplication tasks. The results revealed that (1) behavioral and pupil dilation data increased parametrically with task difficulty; (2) mental multiplication with increasing difficulty recruited a fronto-parietal circuit comprising left pre-supplementary motor area, left precentral gyrus, right dorsolateral prefrontal cortex, and bilateral intraparietal sulcus (IPS); and (3) pupil dilation was sensitive to cognitive resource allocation for neural activity underlying math-specific cognition in the bilateral IPS, implicating a strong reliance on numerical quantity processing during multiplication. In conclusion, the pupil dilation could be used in mathematics education as an easily acquired peripheral physiological indicator (without relying on fMRI) that might lead to a better understanding of dynamical changes in learning arithmetic abilities as a function of training, experience, and development. On a broader level, its application allows to obtain useful insights into learning disabilities such as dyscalculia, and further improve rehabilitation programs with appropriate intervention structures.


fMRI Pupil Dilation Intraparietal sulcus Dorsolateral prefrontal cortex Education 



SL was funded by the Konsul-Karl-und-Dr-Gabriele-Sandmann Stiftung, Berlin Germany, and the Université Pierre et Marie Curie, EC3C No. 158, Paris VI, France.


  1. Aleman, A., & Van’t Wout, M. (2008). Repetitive transcranial magnetic stimulation over the right dorsolateral prefrontal cortex disrupts digit span task performance. Neuropsychobiology, 57(1–2), 44–48.CrossRefGoogle Scholar
  2. Andres, M., Seron, X., & Olivier, E. (2007). Contribution of hand motor circuits to counting. Journal of Cognitive Neuroscience, 19(4), 563–576.CrossRefGoogle Scholar
  3. Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Review Neuroscience, 9(4), 278–291.CrossRefGoogle Scholar
  4. Ashcraft, M. H. (1992). Cognitive arithmetic: A review of data and theory. Cognition, 44(1–2), 75–106.CrossRefGoogle Scholar
  5. Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91, 276–292.CrossRefGoogle Scholar
  6. Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. In T. Cacioppo, L. Tassinary, & G. Berntson (Eds.), Handbook of psychophysiology (pp. 142–162). New York: Cambridge University Press.Google Scholar
  7. Behrmann, M., Geng, J. J., & Shomstein, S. (2004). Parietal cortex and attention. Current Opinion in Neurobiology, 14(2), 212–217.CrossRefGoogle Scholar
  8. Buchel, C., Holmes, A. P., Rees, G., & Friston, K. J. (1998). Characterizing stimulus-response functions using nonlinear regressors in parametric fMRI experiments. Neuroimage, 8(2), 140–148.CrossRefGoogle Scholar
  9. Butterworth, B. (1999). A head for figures. Science, 284(5416), 928–929.CrossRefGoogle Scholar
  10. Carpenter, T. P., & Moser, J. M. (1983). The acquisition of addition and subtraction concepts. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics, concepts and processes (pp. 7–44). New York: Academic Press.Google Scholar
  11. Cohen, L., & Dehaene, S. (1996). Cerebral networks for number processing: Evidence from a case of posterior callosal lesion. Neurocase, 2, 155–174.CrossRefGoogle Scholar
  12. Cohen Kadosh, R., Lammertyn, J., & Izard, V. (2008). Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation. Progress in Neurobiology, 84(2), 132–147.CrossRefGoogle Scholar
  13. Committeri, G., Galati, G., Paradis, A. L., Pizzamiglio, L., Berthoz, A., & LeBihan, D. (2004). Reference frames for spatial cognition: Different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. Journal of Cognitive Neuroscience, 16(9), 1517–1535.CrossRefGoogle Scholar
  14. Dehaene, S. (1997). The number sense. Oxford: Oxford University Press.Google Scholar
  15. Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1(1), 83–120.Google Scholar
  16. Dehaene, S., Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in Neurosciences, 21(8), 355–361.CrossRefGoogle Scholar
  17. Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14(2), 218–224.CrossRefGoogle Scholar
  18. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3–6), 487–506.CrossRefGoogle Scholar
  19. Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284, 970–974.CrossRefGoogle Scholar
  20. Dehaene, S., Tzourio, N., Frak, V., Raynaud, L., Cohen, L., Mehler, J., et al. (1996). Cerebral activations during number multiplication and comparison: A PET study. Neuropsychologia, 34(11), 1097–1106.CrossRefGoogle Scholar
  21. Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., et al. (2003). Learning complex arithmetic—An fMRI study. Brain Research Cognitive Brain Research, 18(1), 76–88.CrossRefGoogle Scholar
  22. Delazer, M., Domahs, F., Lochy, A., Bartha, L., Brenneis, C., & Trieb, T. (2004). The acquisition of arithmetic knowledge—An fMRI study. Cortex, 40(1), 166–167.CrossRefGoogle Scholar
  23. Delazer, M., Ischebeck, A., Domahs, F., Zamarian, L., Koppelstaetter, F., Siedentopf, C. M., et al. (2005). Learning by strategies and learning by drill—Evidence from an fMRI study. Neuroimage, 25(3), 838–849.CrossRefGoogle Scholar
  24. Di Luca, S., Grana, A., Semenza, C., Seron, X., & Pesenti, M. (2006). Finger-digit compatibility in Arabic numeral processing. The Quarterly Journal of Experimental Psychology (Colchester), 59(9), 1648–1663.CrossRefGoogle Scholar
  25. Eger, E., Sterzer, P., Russ, M. O., Giraud, A. L., & Kleinschmidt, A. (2003). A supramodal number representation in human intraparietal cortex. Neuron, 37(4), 719–725.CrossRefGoogle Scholar
  26. Fayol, M., Barrouillet, P., & Marinthe, C. (1998). Predicting arithmetical achievement from neuro-psychological performance: A longitudinal study. Cognition, 68(2), B63–B70.CrossRefGoogle Scholar
  27. Feigenson, L., Carey, S., & Hauser, M. (2002). The representations underlying infants’ choice of more: Object files versus analog magnitudes. Psychological Science, 13(2), 150–156.CrossRefGoogle Scholar
  28. Felgenson, L., Carey, S., & Spelke, E. (2002). Infant’s discriminations of numbers vs. continuous extent. Cognitive Psychology, 44, 33–66.CrossRefGoogle Scholar
  29. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.CrossRefGoogle Scholar
  30. Friston, K. J., Holmes, A. P., & Worsley, K. J. (1999). How many subjects constitute a study? Neuroimage, 10, 1–5.CrossRefGoogle Scholar
  31. Fuson, K. C. (1988). Children’s counting and concepts of number. New York: Springer.Google Scholar
  32. Galati, G., Committeri, G., Sanes, J. N., & Pizzamiglio, L. (2001). Spatial coding of visual and somatic sensory information in body-centred coordinates. European Journal of Neuroscience, 14(4), 737–746.CrossRefGoogle Scholar
  33. Geary, D. C. (2000). From infancy to adulthood: The development of numerical abilities. European Child and Adolescent Psychiatry, 9(Suppl 2), II11–II16.Google Scholar
  34. Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15(4), 870–878.CrossRefGoogle Scholar
  35. Goebel, R., Esposito, F., & Formisano, E. (2006). Analysis of functional image analysis contest (FIAC) data with brain voyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Human Brain Mapping, 27(5), 392–401.CrossRefGoogle Scholar
  36. Grabner, R. H., Ansari, D., Koschutnig, K., Reishofer, G., Ebner, F., & Neuper, C. (2009). To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. Neuropsychologia, 47(2), 604–608.Google Scholar
  37. Grabner, R. H., Ansari, D., Reishofer, G., Stern, E., Ebner, F., & Neuper, C. (2007). Individual differences in mathematical competence predict parietal brain activation during mental calculation. Neuroimage, 38(2), 346–356.CrossRefGoogle Scholar
  38. Granger, C. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424–438.CrossRefGoogle Scholar
  39. Granholm, E., Asarnow, R. F., Sarkin, A. J., & Dykes, K. L. (1996). Pupillary responses index cognitive resource limitations. Psychophysiology, 33(4), 457–461.CrossRefGoogle Scholar
  40. Gruber, O., Indefrey, P., Steinmetz, H., & Kleinschmidt, A. (2001). Dissociating neural correlates of cognitive components in mental calculation. Cerebral Cortex, 11(4), 350–359.CrossRefGoogle Scholar
  41. Hauser, M. D., Carey, S., & Hauser, L. B. (2000). Spontaneous number representation in semi-free-ranging rhesus monkeys. Proceedings of the Royal Society of London Series B: Biological Sciences, 267(1445), 829–833.CrossRefGoogle Scholar
  42. Hess, E. H., & Polt, J. M. (1964). Pupil size in relation to mental activity during simple problem-solving. Science, 143, 1190–1192.CrossRefGoogle Scholar
  43. Hesse, W., Moller, E., Arnold, M., & Schack, B. (2003). The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. Journal of Neuroscience Methods, 124(1), 27–44.CrossRefGoogle Scholar
  44. Hillis, A. E., Barker, P. B., Beauchamp, N. J., Gordon, B., & Wityk, R. J. (2000). MR perfusion imaging reveals regions of hypoperfusion associated with aphasia and neglect. Neurology, 55(6), 782–788.Google Scholar
  45. Isaacs, E. B., Edmonds, C. J., Lucas, A., & Gadian, D. G. (2001). Calculation difficulties in children of very low birthweight: A neural correlate. Brain, 124(Pt 9), 1701–1707.CrossRefGoogle Scholar
  46. Ischebeck, A., Zamarian, L., Egger, K., Schocke, M., & Delazer, M. (2007). Imaging early practice effects in arithmetic. Neuroimage, 36(3), 993–1003.CrossRefGoogle Scholar
  47. Ischebeck, A., Zamarian, L., Siedentopf, C., Koppelstatter, F., Benke, T., Felber, S., et al. (2006). How specifically do we learn? Imaging the learning of multiplication and subtraction. Neuroimage, 30(4), 1365–1375.CrossRefGoogle Scholar
  48. Just, M. A., & Carpenter, P. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99, 122–149.CrossRefGoogle Scholar
  49. Just, M. A., Carpenter, P., & Miyake, A. (2003). Neuroindices of cognitive workload: Neuroimaging, pupillo-metric and event-related potential studies of brain work. Theoretical Issues in Ergonomics Science, 4(1), 56–88.CrossRefGoogle Scholar
  50. Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154(756), 1583–1585.CrossRefGoogle Scholar
  51. Kazui, H., Kitagaki, H., & Mori, E. (2000). Cortical activation during retrieval of arithmetical facts and actual calculation: A functional magnetic resonance imaging study. Psychiatry and Clinical Neurosciences, 54(4), 479–485.CrossRefGoogle Scholar
  52. Kiefer, M., & Dehaene, S. (1997). The time course of parietal activation in single-digit multiplication: Evidence from event-related potentials. Mathematical Cognition, 3, 1–30.CrossRefGoogle Scholar
  53. Kong, J., Wang, C., Kwong, K., Vangel, M., Chua, E., & Gollub, R. (2005). The neural substrate of arithmetic operations and procedure complexity. Brain Research Cognitive Brain Research, 22(3), 397–405.CrossRefGoogle Scholar
  54. Krueger, F. (2000). Coding of temporal relations in semantic memory. Cognitive load and task-evoked pupillary response. Berlin: Waxman.Google Scholar
  55. Krueger, F., & Grafman, J. (2008). Disorders of mathematics: Implications for adult functioning. In E. Lorraine, L. E. Schreiber, & J. Wasserstein (Eds.), Adult learning disorders: Contemporary issues (pp. 191–218). New York, NY: Psychology Press.Google Scholar
  56. Krueger, F., Landgraf, S., van der Meer, E., Desphande, G., & Hu, X. (2010). Effective connectivity of the multiplication network: A functional MRI and multivariate Granger causality mapping study. Human Brain Mapping (in press).Google Scholar
  57. Krueger, F., Nuthmann, A., & van der Meer, E. (2001). Pupillometric indices of temporal representation in semantic memory. Zeitschrift für Psychologie, 209, 402–415.CrossRefGoogle Scholar
  58. Krueger, F., Spampinato, M. V., Pardini, M., Pajevic, S., Wood, J. N., Weiss, G. H., et al. (2008). Integral calculus problem solving: An fMRI investigation. Neuroreport, 19(11), 1095–1099.CrossRefGoogle Scholar
  59. Le Clec, H. G., Dehaene, S., Cohen, L., Mehler, J., Dupoux, E., Poline, J. B., et al. (2000). Distinct cortical areas for names of numbers and body parts independent of language and input modality. Neuroimage, 12(4), 381–391.CrossRefGoogle Scholar
  60. Loewenfeld, I. (1993). The pupil: Anatomy, physiology, and clinical applications. Ames: Iowa State University Press.Google Scholar
  61. McCloskey, M., Caramazza, A., & Basili, A. (1985). Cognitive mechanisms in number processing and calculation: Evidence from dyscalculia. Brain and Cognition, 4(2), 171–196.CrossRefGoogle Scholar
  62. Mellet, E., Petit, L., Mazoyer, B., Denis, M., & Tzourio, N. (1998). Reopening the mental imagery debate: Lessons from functional anatomy. Neuroimage, 8(2), 129–139.CrossRefGoogle Scholar
  63. Menon, V., Rivera, S. M., White, C. D., Glover, G. H., & Reiss, A. L. (2000). Dissociating prefrontal and parietal cortex activation during arithmetic processing. Neuroimage, 12(4), 357–365.CrossRefGoogle Scholar
  64. Molko, N., Cachia, A., Riviere, D., Mangin, J. F., Bruandet, M., Le Bihan, D., et al. (2003). Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia of genetic origin. Neuron, 40, 847–858.CrossRefGoogle Scholar
  65. Montojo, C. A., & Courtney, S. M. (2008). Differential neural activation for updating rule versus stimulus information in working memory. Neuron, 59(1), 173–182.CrossRefGoogle Scholar
  66. Naccache, L., & Dehaene, S. (2001). The priming method: Imaging unconscious repetition priming reveals an abstract representation of number in the parietal lobes. Cerebral Cortex, 11(10), 966–974.CrossRefGoogle Scholar
  67. Nichols, T., Brett, M., Andersson, J., Wager, T., & Poline, J. B. (2005). Valid conjunction inference with the minimum statistic. Neuroimage, 25(3), 653–660.CrossRefGoogle Scholar
  68. Nuthmann, A., & van der Meer, E. (2005). Time’s arrow and pupillary response. Psychophysiology, 42, 306–317.CrossRefGoogle Scholar
  69. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.CrossRefGoogle Scholar
  70. Pesenti, M., Thioux, M., Seron, X., & De Volder, A. (2000). Neuroanatomical substrates of Arabic number processing, numerical comparison, and simple addition: A PET study. Journal of Cognitive Neuroscience, 12(3), 461–479.CrossRefGoogle Scholar
  71. Pesenti, M., Zago, L., Crivello, F., Mellet, E., Samson, D., Duroux, B., et al. (2001). Mental calculation in a prodigy is sustained by right prefrontal and medial temporal areas. Nature Neuroscience, 4(1), 103–107.CrossRefGoogle Scholar
  72. Piazza, M., Mechelli, A., Butterworth, B., & Price, C. J. (2002). Are subsidizing and counting implemented as separate or functionally overlapping processes? Neuroimage, 15(2), 435–446.CrossRefGoogle Scholar
  73. Pinel, P., Dehaene, S., Riviere, D., & LeBihan, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage, 14(5), 1013–1026.CrossRefGoogle Scholar
  74. Raisig, S., Welke, T., Hagendorf, H., & van der Meer, E. (2007). Investigating dimensional organization in scripts using the pupillary response. Psychophysiology, 44(6), 864–873.CrossRefGoogle Scholar
  75. Rickard, T. C., Romero, S. G., Basso, G., Wharton, C., Flitman, S., & Grafman, J. (2000). The calculating brain: An fMRI study. Neuropsychologia, 38(3), 325–335.CrossRefGoogle Scholar
  76. Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithmetic: Evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex, 15(11), 1779–1790.CrossRefGoogle Scholar
  77. Rueckert, L., Lange, N., Partiot, A., Appollonio, I., Litvan, I., Le Bihan, D., et al. (1996). Visualizing cortical activation during mental calculation with functional MRI. Neuroimage, 3(2), 97–103.CrossRefGoogle Scholar
  78. Sato, M., Cattaneo, L., Rizzolatti, G., & Gallese, V. (2007). Numbers within our hands: Modulation of corticospinal excitability of hand muscles during numerical judgment. Journal of Cognitive Neuroscience, 19(4), 684–693.CrossRefGoogle Scholar
  79. Seymour, S. E., Reuter-Lorenz, P. A., & Gazzaniga, M. S. (1994). The disconnection syndrome. Basic findings reaffirmed. Brain, 117(Pt 1), 105–115.CrossRefGoogle Scholar
  80. Siegle, G. J., Steinhauer, S. R., Stenger, V. A., Konecky, R., & Carter, C. S. (2003). Use of concurrent pupil dilation assessment to inform interpretation and analysis of fMRI data. Neuroimage, 20(1), 114–124.CrossRefGoogle Scholar
  81. Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33(3), 475–487.CrossRefGoogle Scholar
  82. Spelke, E., & Dehaene, S. (1999). Biological foundations of numerical thinking. Response to T.J. Simon (1999). Trends in Cognitive Science, 3(10), 365–366.CrossRefGoogle Scholar
  83. Stanescu-Cosson, R., Pinel, P., van De Moortele, P. F., Le Bihan, D., Cohen, L., & Dehaene, S. (2000). Understanding dissociations in dyscalculia: A brain imaging study of the impact of number size on the cerebral networks for exact and approximate calculation. Brain, 123(Pt 11), 2240–2255.CrossRefGoogle Scholar
  84. Steinhauer, S. R., & Hakerem, G. (1992). The pupillary response in cognitive psychophysiology and schizophrenia. Annals of the New York Academy of Sciences, 658, 182–204.CrossRefGoogle Scholar
  85. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical Publishers.Google Scholar
  86. Temple, C. M., & Marriott, A. J. (1998). Arithmetic ability and disability in Turner’s syndrome: A cognitive neuropsychological analysis. Developmental Neuropsychology, 14, 47–67.CrossRefGoogle Scholar
  87. Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective & Behavioral Neuroscience, 3(4), 255–274.CrossRefGoogle Scholar
  88. Wechsler-Clearfield, M., & Mix, K. S. (1999). Number versus contour length in infant’s discrimination of small visual sets. Psychological Science, 10, 408–411.CrossRefGoogle Scholar
  89. Wojciulik, E., & Kanwisher, N. (1999). The generality of parietal involvement in visual attention. Neuron, 23(4), 747–764.CrossRefGoogle Scholar
  90. Xu, F. (2003). Numerosity discrimination in infants: Evidence for two systems of representations. Cognition, 89(1), B15–B25.CrossRefGoogle Scholar
  91. Xu, K., Anderson, T. R., Neyer, K. M., Lamparella, N., Jenkins, G., Zhou, Z., et al. (2007). Nucleotide sequence variation within the human tyrosine kinase B neurotrophin receptor gene: Association with antisocial alcohol dependence. Pharmacogenomics Journal, 7(6), 368–379.CrossRefGoogle Scholar
  92. Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation. Neuroimage, 13(2), 314–327.CrossRefGoogle Scholar
  93. Zago, L., Petit, L., Turbelin, M. R., Andersson, F., Vigneau, M., & Tzourio-Mazoyer, N. (2008). How verbal and spatial manipulation networks contribute to calculation: An fMRI study. Neuropsychologia, 46(9), 2403–2414.CrossRefGoogle Scholar
  94. Zhou, X. Q., He, R., Liu, Z., & Wang, C. Q. (2002). Clinical analysis of 7 patients with Gerstmann syndrome secondary to cerebral vascular disease. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 24(5), 510–511.Google Scholar

Copyright information

© FIZ Karlsruhe 2010

Authors and Affiliations

  1. 1.Department of PsychologyHumboldt UniversityBerlinGermany
  2. 2.Laboratoire de Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences U894, Hôpital Sainte AnneUniversité Paris Descartes INSERMParisFrance
  3. 3.Department of Cognitive Science (ED3C)University Pierre and Marie Curie Paris VIParisFrance
  4. 4.Berlin School of Mind and BrainBerlinGermany
  5. 5.Department of Molecular NeuroscienceGeorge Mason UniversityFairfaxUSA

Personalised recommendations