ZDM

, Volume 42, Issue 6, pp 635–647 | Cite as

Long-term characteristics of analogical processing in high-school students with high fluid intelligence: an fMRI study

  • Franziska Preusse
  • Elke van der Meer
  • Dorothea Ullwer
  • Martin Brucks
  • Frank Krueger
  • Isabell Wartenburger
Original Article

Abstract

Intelligence is known to predict scholastic achievement and enables high performance in cognitive tasks. Fluid intelligence is strongly related to analogical reasoning abilities, which are fundamental to mathematical thinking. Geometric analogical reasoning is a prototypical measure of fluid intelligence. However, the cerebral correlates of geometric analogical reasoning and their developmental modulation over time are still rarely investigated. We report a 1-year follow-up functional magnetic resonance imaging study of a geometric analogical reasoning task in high fluid intelligence high-school students. This study was designed to characterise the cerebral correlates of geometric analogical reasoning and to improve our knowledge about the impact of general cognitive development on behavioural performance and on cerebral mechanisms underlying geometric analogical reasoning in adolescents. Our data indicate that a fronto-parietal network comprising the left and right parietal lobes and the left middle frontal gyrus was equally modulated by task difficulty at both measuring time points. At the behavioural level, however, participants showed improvements in performance at the second measuring time point. The behavioural improvements point to a more efficient task processing. As this is not accompanied by differential recruitment of fronto-parietal brain regions, the data suggest an increase in neural efficiency for these brain regions.

Keywords

Geometric analogical reasoning High fluid intelligence Adolescents Follow-up Functional magnetic resonance imaging (fMRI) 

Notes

Acknowledgments

This research was supported by grants from the German Bundesministerium für Bildung und Forschung (BMBF; programme Neuroscience, Instruction, and Learning) and BNIC (Berlin NeuroImaging Center). IW is supported by the Stifterverband für die Deutsche Wissenschaft (Claussen-Simon-Stiftung). The authors thank Jan-Ole Christian, Manja Homberg and Esther Kuehn for their help with data acquisition. Furthermore, the helpful comments of three anonymous reviewers are gratefully acknowledged.

References

  1. Ackerman, P. L., Beier, M. E., & Boyle, M. O. (2005). Working memory and intelligence: The same or different constructs? Psychological Bulletin, 131, 30–60.CrossRefGoogle Scholar
  2. Ansari, D., & Coch, D. (2006). Bridges over troubled waters: Education and cognitive neuroscience. Trends in Cognitive Sciences, 10(4), 146–151.CrossRefGoogle Scholar
  3. Ashcraft, M. H., & Krause, J. A. (2007). Working memory, math performance, and math anxiety. Psychonomic Bulletin & Review, 14(2), 243–248.CrossRefGoogle Scholar
  4. Baker, S. C., Frith, C. D., Frackowiak, R. S., & Dolan, R. J. (1996). Active representation of shape and spatial location in man. Cerebral Cortex, 6(4), 612–619.CrossRefGoogle Scholar
  5. Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2003). General multilevel linear modeling for group analysis in FMRI. NeuroImage, 20(2), 1052–1063.CrossRefGoogle Scholar
  6. Blades, M., & Cooke, Z. (1994). Young children’s ability to understand a model as a spatial representation. Journal of Genetic Psychology, 155, 201–218.CrossRefGoogle Scholar
  7. Blakemore, S.-J., & Choudhury, S. (2006). Development of the adolescent brain: Implications for executive function and social cognition. Journal of Child Psychology and Psychiatry, 47, 296–312.CrossRefGoogle Scholar
  8. Boroojerdi, B., Phipps, M., Kopylev, L., Wharton, C. M., Cohen, L. G., & Grafman, J. (2001). Enhancing analogic reasoning with rTMS over the left prefrontal cortex. Neurology, 56(4), 526–528.Google Scholar
  9. Bunge, S. A., Wendelken, C., Badre, D., & Wagner, A. D. (2005). Analogical reasoning and prefrontal cortex: Evidence for separable retrieval and integration mechanisms. Cerebral Cortex, 15(3), 239–249.CrossRefGoogle Scholar
  10. Cabeza, R., & Nyberg, L. (2000). Imaging cognition. II. An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1–47.CrossRefGoogle Scholar
  11. Carlesimo, G. A., Perri, R., Turriziani, P., Tomaiuolo, F., & Caltagirone, C. (2001). Remembering what but not where: Independence of spatial and visual working memory in the human brain. Cortex, 37(4), 519–534.CrossRefGoogle Scholar
  12. Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54(1), 1–22.CrossRefGoogle Scholar
  13. Christoff, K., Prabhakaran, V., Dorfman, J., Zhao, Z., Kroger, J. K., Holyoak, K. J., et al. (2001). Rostrolateral prefrontal cortex involvement in relational integration during reasoning. NeuroImage, 14(5), 1136–1149.CrossRefGoogle Scholar
  14. Cohen, M. S., Kosslyn, S. M., Breiter, H. C., DiGirolamo, G. J., Thompson, W. L., Anderson, A. K., et al. (1996). Changes in cortical activity during mental rotation. A mapping study using functional MRI. Brain, 119(1), 89–100.CrossRefGoogle Scholar
  15. Corballis, M. C., & Roldan, C. E. (1974). On the perception of symmetrical and repeated patterns. Perception & Psychophysics, 16(1), 136–142.Google Scholar
  16. Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162–173.CrossRefGoogle Scholar
  17. Cox, R. W., & Hyde, J. S. (1997). Software tools for analysis and visualization of FMRI data. NMR in Biomedicine, 10(4–5), 171–178.CrossRefGoogle Scholar
  18. Curtis, C. E. (2006). Prefrontal and parietal contributions to spatial working memory. Neuroscience, 139(1), 173–180.CrossRefGoogle Scholar
  19. D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7(1), 1–13.CrossRefGoogle Scholar
  20. Deichmann, R. (2005). Fast high-resolution T1 mapping of the human brain. Magnetic Resonance in Medicine, 54(1), 20–27.CrossRefGoogle Scholar
  21. Flemming, T. M., Beran, M. J., Thompson, R. K. R., Kleider, H. M., & Washburn, D. A. (2008). What meaning means for same and different: Analogical reasoning in humans (Homo sapiens), chimpanzees (Pan troglodytes), and rhesus monkeys (Macaca mulatta). Journal of Comparative Psychology, 122(2), 176–185.CrossRefGoogle Scholar
  22. French, R. (2002). The computational modeling of analogy-making. Trends in Cognitive Science, 6(5), 200–205.CrossRefGoogle Scholar
  23. Freudenthaler, H. H., Spinath, B., & Neubauer, A. C. (2008). Predicting school achievement in boys and girls. European Journal of Personality, 22(3), 231–245.CrossRefGoogle Scholar
  24. Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science: A Multidisciplinary Journal, 7(2), 155–170.CrossRefGoogle Scholar
  25. Gentner, D. (1988). Metaphor as structure mapping: The relational shift. Child Development, 59(1), 47–59.CrossRefGoogle Scholar
  26. Gerardin, E., Sirigu, A., Lehéricy, S., Poline, J. B., Gaymard, B., Marsault, C., et al. (2000). Partially overlapping neural networks for real and imagined hand movements. Cerebral Cortex, 10(11), 1093–1104.CrossRefGoogle Scholar
  27. Goswami, U. (1991). Analogical reasoning: What develops? A review of research and theory. Child Development, 62(1), 1–22.CrossRefGoogle Scholar
  28. Grabner, R. H., Fink, A., Stipacek, A., Neuper, C., & Neubauer, A. C. (2004). Intelligence and working memory systems: Evidence of neural efficiency in alpha band ERD. Cognitive Brain Research, 20(2), 212–225.CrossRefGoogle Scholar
  29. Green, A. E., Fugelsang, J. A., Kraemer, D. J. M., Shamosh, N. A., & Dunbar, K. N. (2006). Frontopolar cortex mediates abstract integration in analogy. Brain Research, 1096(1), 125–137.CrossRefGoogle Scholar
  30. Haier, R. J., Siegel, B. V., Tang, C., Abel, L., & Buchsbaum, M. S. (1992). Intelligence and changes in regional cerebral glucose metabolic rate following learning. Intelligence, 16(3–4), 415–426.CrossRefGoogle Scholar
  31. Hier, D. B., Mogil, S. I., Rubin, N. P., & Komros, G. R. (1980). Semantic aphasia: A neglected entity. Brain and Language, 10(1), 120–131.CrossRefGoogle Scholar
  32. Hofstadter, D. R. (1997). Fluid concepts and creative analogies: Computer models of the fundamental mechanisms of thought. London: Penguin Press.Google Scholar
  33. Hofstadter, D. R. (2001). Analogy as the core of cognition. In D. Gentner, K. J. Holyoak, & B. N. Kokinov (Eds.), The analogical mind: Perspectives from cognitive science (pp. 504–537). Cambridge, MA: MIT Press.Google Scholar
  34. Holyoak, K. J., & Kroger, J. K. (1995). Forms of Reasoning: Insight into prefrontal functions? Annals of the New York Academy of Sciences, 769(1), 253–264.CrossRefGoogle Scholar
  35. Holyoak, K. J., & Morrison, R. (2005). The Cambridge handbook of thinking and reasoning. Cambridge: University Press.Google Scholar
  36. Horn, J. L., & Cattell, R. B. (1966). Refinement and test of the theory of fluid and crystallized general intelligences. Journal of Educational Psychology, 57(5), 253–270.CrossRefGoogle Scholar
  37. Hosenfeld, B., Boom, D. C., & Resing, W. C. M. (1997). Constructing geometric analogies for the longitudinal testing of elementary school children. Journal of Educational Measurement, 34(4), 367–372.CrossRefGoogle Scholar
  38. Ischebeck, A., Zamarian, L., Egger, K., Schocke, M., & Delazer, M. (2007). Imaging early practice effects in arithmetic. NeuroImage, 36(3), 993–1003.CrossRefGoogle Scholar
  39. Ischebeck, A., Zamarian, L., Siedentopf, C., Koppelstaetter, F., Benke, T., Felber, S., et al. (2006). How specifically do we learn? Imaging the learning of multiplication and subtraction. NeuroImage, 30(4), 1365–1375.CrossRefGoogle Scholar
  40. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841.CrossRefGoogle Scholar
  41. Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5(2), 143–156.CrossRefGoogle Scholar
  42. Johnson, M. H., & Munakata, Y. (2005). Processes of change in brain and cognitive development. Trends in Cognitive Science, 9(3), 152–158.CrossRefGoogle Scholar
  43. Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30, 135–154.CrossRefGoogle Scholar
  44. Kalbfleisch, M. L., van Meter, J. W., & Zeffiro, T. A. (2007). The influences of task difficulty and response correctness on neural systems supporting fluid reasoning. Cognitive Neurodynamics, 1(1), 71–84.CrossRefGoogle Scholar
  45. Kelly, A. M. C., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15(8), 1089–1102.CrossRefGoogle Scholar
  46. Kennedy, E. H., & Fragaszy, D. M. (2008). Analogical reasoning in a capuchin monkey (Cebus apella). Journal of Comparative Psychology, 122(2), 167–175.CrossRefGoogle Scholar
  47. Knauff, M., Fangmeier, T., Ruff, C. C., & Johnson-Laird, P. N. (2002a). Reasoning, models, and images: Behavioral measures and cortical activity. Journal of Cognitive Neuroscience, 15(4), 559–573.CrossRefGoogle Scholar
  48. Knauff, M., Mulack, T., Kassubek, J., Salih, H. R., & Greenlee, M. W. (2002b). Spatial imagery in deductive reasoning: A functional MRI study. Cognitive Brain Research, 13(2), 203–212.CrossRefGoogle Scholar
  49. Kokinov, B., & French, R. M. (2003). Computational models of analogy-making. In L. Nadel (Ed.), Encyclopedia of cognitive science (Vol. 1, pp. 113–118). London: Nature Publishing Group.Google Scholar
  50. Kosslyn, S. M., Koenig, O., Barrett, A., Cave, C. B., Tang, J., & Gabrieli, J. D. (1989). Evidence for two types of spatial representations: Hemispheric specialization for categorical and coordinate relations. Journal of Experimental Psychology: Human Perception and Performance, 15(4), 723–735.CrossRefGoogle Scholar
  51. Kroger, J. K., Sabb, F. W., Fales, C. L., Bookheimer, S. Y., Cohen, M. S., & Holyoak, K. J. (2002). Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: A parametric study of relational complexity. Cerebral Cortex, 12(5), 477–485.CrossRefGoogle Scholar
  52. Levinson, P. J., & Carpenter, R. L. (1974). An analysis of analogical reasoning in children. Child Development, 45(3), 857–861.CrossRefGoogle Scholar
  53. Luo, Q., Perry, C., Peng, D., Jin, Z., Xu, D., Ding, G., et al. (2003). The neural substrate of analogical reasoning: An fMRI study. Cognitive Brain Research, 17(3), 527–534.CrossRefGoogle Scholar
  54. Mayer, J. S., Roebroeck, A., Maurer, K., & Linden, D. E. (2010). Specialization in the default mode: Task-induced brain deactivations dissociate between visual working memory and attention. Human Brain Mapping, 31, 126–139.Google Scholar
  55. Mulholland, T. M., Pellegrino, J. W., & Glaser, R. (1980). Components of geometric analogy solution. Cognitive Psychology, 12(2), 252–284.CrossRefGoogle Scholar
  56. Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience and Biobehavioral Reviews, 33(7), 1004–1023.CrossRefGoogle Scholar
  57. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRefGoogle Scholar
  58. Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79.CrossRefGoogle Scholar
  59. Pessoa, L., Gutierrez, E., Bandettini, P., & Ungerleider, L. (2002). Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron, 35(5), 975–987.CrossRefGoogle Scholar
  60. Poldrack, R. A. (2000). Imaging brain plasticity: Conceptual and methodological issues—A theoretical review. NeuroImage, 12(1), 1–13.CrossRefGoogle Scholar
  61. Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1997). Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven’s Progressive Matrices Test. Cognitive Psychology, 33(1), 43–63.CrossRefGoogle Scholar
  62. Qiu, J., Li, H., Chen, A., & Zhang, Q. (2008). The neural basis of analogical reasoning: An event-related potential study. Neuropsychologia, 46(12), 3006–3013.CrossRefGoogle Scholar
  63. Raven, J., Court, J., & Raven, J. J. (1980). RAVEN-Matrizen-Test advanced progressive matrices. Weinheim: Beltz Test Gesellschaft.Google Scholar
  64. Richland, L. E., Morrison, R. G., & Holyoak, K. J. (2006). Children’s development of analogical reasoning: Insights from scene analogy problems. Journal of Experimental Child Psychology, 94(3), 249–273.CrossRefGoogle Scholar
  65. Royer, F. L. (1981). Detection of symmetry. Journal of Experimental Psychology: Human Perception and Performance, 7(6), 1186–1210.CrossRefGoogle Scholar
  66. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155.CrossRefGoogle Scholar
  67. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl), S208–S219.CrossRefGoogle Scholar
  68. Smith, E. E., & Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33(1), 5–42.CrossRefGoogle Scholar
  69. Smith, E. E., Jonides, J., Koeppe, R., Awh, E., Schumacher, E., & Minoshima, S. (1995). Spatial versus object working memory: PET investigations. Journal of Cognitive Neuroscience, 7(3), 337–356.CrossRefGoogle Scholar
  70. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: An approach to cerebral imaging. Stuttgart: Thieme.Google Scholar
  71. Toga, A. W., Thompson, P. M., & Sowell, E. R. (2006). Mapping brain maturation. Trends in Neurosciences, 29, 148–159.CrossRefGoogle Scholar
  72. Ungerleider, L. G., Courtney, S. M., & Haxby, J. V. (1998). A neural system for human visual working memory. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 883–890.CrossRefGoogle Scholar
  73. Ungerleider, L. G., & Haxby, J. V. (1994). ‘What’ and ‘where’ in the human brain. Current Opinion in Neurobiology, 4(2), 157–165.CrossRefGoogle Scholar
  74. van der Meer, E., Beyer, R., Horn, J., Foth, M., Bornemann, B., Ries, J., et al. (2010). Resource allocation and fluid intelligence: Insights from pupillometry. Psychophysiology, 47(1), 158–169.CrossRefGoogle Scholar
  75. Vosniadou, S., Skopeliti, I., & Ikospentaki, K. (2005). Reconsidering the role of artifacts in reasoning: Children’s understanding of the globe as a model of the earth. Learning and Instruction, 15(4), 333–351.CrossRefGoogle Scholar
  76. Wartenburger, I., Heekeren, H. R., Preusse, F., Kramer, J., & van der Meer, E. (2009). Cerebral correlates of analogical processing and their modulation by training. NeuroImage, 48(1), 291–302.CrossRefGoogle Scholar
  77. Wendelken, C., Nakhabenko, D., Donohue, S. E., Carter, C. S., & Bunge, S. A. (2008). “Brain is to thought as stomach is to ?”: Investigating the role of rostrolateral prefrontal cortex in relational reasoning. Journal of Cognitive Neuroscience, 20(4), 682–693.CrossRefGoogle Scholar
  78. Wharton, C. M., Grafman, J., Flitman, S. S., Hansen, E. K., Brauner, J., Marks, A., et al. (2000). Toward neuroanatomical models of analogy: A positron emission tomography study of analogical mapping. Cognitive Psychology, 40(3), 173–197.CrossRefGoogle Scholar
  79. Wittchen, H., Zaudig, M., & Fydrich, T. (1997). Strukturiertes Klinisches Interview für DSM–IV. Göttingen: Hogrefe.Google Scholar
  80. Woolrich, M. W. (2008). Robust group analysis using outlier inference. NeuroImage, 41(2), 286–301.CrossRefGoogle Scholar
  81. Woolrich, M. W., Behrens, T. E. J., Beckmann, C. F., Jenkinson, M., & Smith, S. M. (2004). Multilevel linear modelling for FMRI group analysis using Bayesian inference. NeuroImage, 21(4), 1732–1747.CrossRefGoogle Scholar
  82. Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., et al. (2009). Bayesian analysis of neuroimaging data in FSL. NeuroImage, 45(Suppl), S173–S186.CrossRefGoogle Scholar
  83. Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal autocorrelation in univariate linear modeling of FMRI data. NeuroImage, 14(6), 1370–1386.CrossRefGoogle Scholar
  84. Wright, S. B., Matlen, B. J., Baym, C. L., Ferrer, E., & Bunge, S. A. (2008). Neural correlates of fluid reasoning in children and adults. Frontiers in Human Neuroscience, 1, 1–8.Google Scholar
  85. Yurgelun-Todd, D. (2007). Emotional and cognitive changes during adolescence. Current Opinion in Neurobiology, 17, 251–257.CrossRefGoogle Scholar
  86. Zarahn, E., Aguirre, G., & D’Esposito, M. (1997). A trial-based experimental design for fMRI. NeuroImage, 6, 122–138.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2010

Authors and Affiliations

  • Franziska Preusse
    • 1
    • 2
    • 3
  • Elke van der Meer
    • 2
    • 3
  • Dorothea Ullwer
    • 1
  • Martin Brucks
    • 3
  • Frank Krueger
    • 4
  • Isabell Wartenburger
    • 1
    • 2
    • 5
  1. 1.Department of Neurology, Berlin NeuroImaging CenterCharité-Universitaetsmedizin Berlin CCMBerlinGermany
  2. 2.Berlin School of Mind and BrainHumboldt-Universitaet zu BerlinBerlinGermany
  3. 3.Department of PsychologyHumboldt-Universitaet zu BerlinBerlinGermany
  4. 4.Center for the Study of NeuroeconomicsGeorge Mason UniversityFairfaxUSA
  5. 5.Department of LinguisticsUniversity of PotsdamPotsdamGermany

Personalised recommendations