, Volume 42, Issue 6, pp 515–525 | Cite as

Developmental cognitive neuroscience of arithmetic: implications for learning and education

Original Article


In this article, we review the brain and cognitive processes underlying the development of arithmetic skills. This review focuses primarily on the development of arithmetic skills in children, but it also summarizes relevant findings from adults for which a larger body of research currently exists. We integrate relevant findings and theories from experimental psychology and cognitive neuroscience. We describe the functional neuroanatomy of cognitive processes that influence and facilitate arithmetic skill development, including calculation, retrieval, strategy use, decision making, as well as working memory and attention. Building on recent findings from functional brain imaging studies, we describe the role of distributed brain regions in the development of mathematical skills. We highlight neurodevelopmental models that go beyond the parietal cortex role in basic number processing, in favor of multiple neural systems and pathways involved in mathematical information processing. From this viewpoint, we outline areas for future study that may help to bridge the gap between the cognitive neuroscience of arithmetic skill development and educational practice.



It is a pleasure to thank Meghan Meyer, Sarah Wu and Christina B Young for assistance in the preparation of this article, Dr. Mark Eckert for assistance with Fig. 3, and Dr. Miriam Rosenberg-Lee for the insightful comments and feedback. The preparation of this article was made possible by grants from the NIH (HD047520, HD059205) and the National Science Foundation (BCS/DRL 0449927).


  1. Ackerman, B. P. (1996). Induction of a memory retrieval strategy by young children. Journal of Experimental Child Psychology, 62(2), 243–271.CrossRefGoogle Scholar
  2. Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience, 9(4), 278–291.CrossRefGoogle Scholar
  3. Arterberry, M. E., Milburn, M. M., Loza, H. L., & Willert, H. S. (2001). Retrieval of episodic information from memory: Comparisons among 3- and 4-year-olds, 7- and 8-year olds, and adults. Journal of Cognition and Development, 2, 283–305.CrossRefGoogle Scholar
  4. Ashcraft, M. H. (1982). The development of mental arithmetic: A chronometric approach. Developmental Review, 2, 213–236.CrossRefGoogle Scholar
  5. Baroody, A. J. (1987). The development of counting strategies for single-digit addition. Journal for Research in Mathematics Education, 18, 141–157.CrossRefGoogle Scholar
  6. Barth, H., La Mont, K., Lipton, J., & Spelke, E. S. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 14116–14121.CrossRefGoogle Scholar
  7. Beilock, S. L., & Carr, T. H. (2005). When high-powered people fail: Working memory and “choking under pressure” in math. Psychological Science, 16(2), 101–105.CrossRefGoogle Scholar
  8. Besnon, D. F., & Weir, W. F. (1972). Acalculia: Acquired anarithmetia. Cortex, 8(4), 465–472.Google Scholar
  9. Bruandet, M., Molko, N., Cohen, L., & Dehaene, S. (2004). A cognitive characterization of dyscalculia in Turner syndrome. Neuropsychologia, 42(3), 288–298.CrossRefGoogle Scholar
  10. Bull, R., Epsy, K., & Wiebe, S. (2008). Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology, 33(3), 205–208.CrossRefGoogle Scholar
  11. Bunge, S. A., & Wright, S. B. (2007). Neurodevelopmental changes in working memory and cognitive control. Current Opinion in Neurobiology, 17(2), 243–250.Google Scholar
  12. Cantlon, J. F., Brannon, E. M., Carter, E. J., & Pelphrey, K. A. (2006). Functional imaging of numerical processing in adults and 4-y-old children. PLoS Biology, 4(5), e125.CrossRefGoogle Scholar
  13. Cantlon, J. F., Libertus, M. E., Pinel, P., Dehaene, S., Brannon, E. M., & Pelphrey, K. A. (2009). The neural development of an abstract concept of number. Journal of Cognitive Neuroscience, 21(11), 2217–2229.CrossRefGoogle Scholar
  14. Casey, B. J., Thomas, K. M., Davidson, M. C., Kunz, K., & Franzen, P. L. (2002). Dissociating striatal and hippocampal function developmentally with a stimulus–response compatibility task. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(19), 8647–8652.Google Scholar
  15. Chang, C., Crottaz-Herbette, S., & Menon, V. (2007). Temporal dynamics of basal ganglia response and connectivity during verbal working memory. Neuroimage, 34(3), 1253–1269.CrossRefGoogle Scholar
  16. Chochon, F., Cohen, L., van de Moortele, P. F., & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience, 11(6), 617–630.CrossRefGoogle Scholar
  17. Cohen, L., & Dehaene, S. (2004). Specialization within the ventral stream: The case for the visual word form area. Neuroimage, 22(1), 466–476.CrossRefGoogle Scholar
  18. Crottaz-Herbette, S., Anagnoson, R. T., & Menon, V. (2004). Modality effects in verbal working memory: Differential prefrontal and parietal responses to auditory and visual stimuli. Neuroimage, 21(1), 340–351.CrossRefGoogle Scholar
  19. Crottaz-Herbette, S., & Menon, V. (2006). Where and when the anterior cingulate cortex modulates attentional response: Combined fMRI and ERP evidence. Journal of Cognitive Neuroscience, 18(5), 766–780.CrossRefGoogle Scholar
  20. Cycowicz, Y. M. (2000). Memory development and event-related brain potentials in children. Biological Psychology, 54(1–3), 145–174.CrossRefGoogle Scholar
  21. Cycowicz, Y. M., Friedman, D., Snodgrass, J. G., & Duff, M. (2001). Recognition and source memory for pictures in children and adults. Neuropsychologia, 39(3), 255–267.CrossRefGoogle Scholar
  22. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3/4/5/6), 487–506.CrossRefGoogle Scholar
  23. Delazer, M., & Benke, T. (1997). Arithmetic facts without meaning. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 33(4), 697–710.Google Scholar
  24. Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., et al. (2003). Learning complex arithmetic—An fMRI study. Brain Research: Cognitive Brain Research, 18(1), 76–88.CrossRefGoogle Scholar
  25. Delazer, M., Domahs, F., Lochy, A., Bartha, L., Brenneis, C., & Trieb, T. (2004). The acquisition of arithmetic knowledge—An fMRI study. Cortex, 40(1).Google Scholar
  26. Delazer, M., Ischebeck, A., Domahs, F., Zamarian, L., Koppelstaetter, F., Siedentopf, C. M., et al. (2005). Learning by strategies and learning by drill—Evidence from an fMRI study. Neuroimage, 25(3), 838–849.CrossRefGoogle Scholar
  27. Dowker, A. (2005). Individual differences in arithmetic: Implications for psychology, neuroscience, and education. New York: Psychology Press.CrossRefGoogle Scholar
  28. Eichenbaum, H. (2000). Hippocampus: Mapping or memory? Current Biology, 10, R785–R787.CrossRefGoogle Scholar
  29. Fuchs, L. S., Compton, D. L., Fuchs, D., Paulsen, K., Bryant, J. D., & Hamlett, C. L. (2005). The prevention, identification, and cognitive determinants of math difficulty. Journal of Educational Psychology, 97, 493–513.CrossRefGoogle Scholar
  30. Fuchs, L. S., Powell, S. R., Hamlett, C. L., Fuchs, D., Cirino, P. T., & Fletcher, J. M. (2007). Remediating computational deficits at third grade: A randomized field trial. Journal of Research on Educational Effectiveness (in press).Google Scholar
  31. Geary, D. C. (1990). A componential analysis of an early learning deficit in mathematics. Journal of Experimental Child Psychology, 49(3), 363–383.CrossRefGoogle Scholar
  32. Geary, D. C. (1994). Children’s mathematical development: Research and practical applications. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  33. Geary, D. C., & Brown, S. C. (1991). Cognitive addition: Strategy choice and speed-of-processing differences in gifted, normal, and mathematically disabled children. Developmental Psychology, 27, 398–406.CrossRefGoogle Scholar
  34. Geary, D. C., & Damon, W. (2006). Development of mathematical understanding. In D. Kuhl & R. S. Siegler (Eds.), Handbook of child psychology (Vol. 6). New York: Wiley.Google Scholar
  35. Geary, D. C., Hamson, C. O., & Hoard, M. K. (2000). Numerical and arithmetical cognition: A longitudinal study of process and concept deficits in children with learning disability. Journal of Experimental Child Psychology, 77(3), 236–263.CrossRefGoogle Scholar
  36. Geary, D. C., Hoard, M. K., Byrd-Craven, J., & DeSoto, M. C. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88(2), 121–151.CrossRefGoogle Scholar
  37. Geary, D. C., Hoard, M. K., Nugent, L., Byrd-Craven, J., Berch, D. B., & Mazzocco, M. M. (2007). Strategy use, long-term memory, and working memory capacity. In Anonymous (Ed.), Why is math so hard for some children? (pp. 83–105). Baltimore, MD: Paul H. Brookes Publishing Co.Google Scholar
  38. Geary, D. C., Hoard, M. K., & Royer, J. M. (2002). Learning disabilities in basic mathematics: Deficits in memory and cognition. In Anonymous (Ed.), Mathematical cognition (pp. 93–115). Greenwich, CT: Information Age Publishing.Google Scholar
  39. Geary, D. C., Widaman, K. F., & Little, T. D. (1986). Cognitive addition and multiplication: Evidence for a single memory network. Memory and Cognition, 14, 478–487.CrossRefGoogle Scholar
  40. Ghilardi, M., Ghez, C., Dhawan, V., Moeller, J., Mentis, M., Nakamura, T., et al. (2000). Patterns of regional brain activation associated with different forms of motor learning. Brain Research, 871(1), 127–145.CrossRefGoogle Scholar
  41. Girelli, L., Delazer, M., Semenza, C., & Denes, G. (1996). The representation of arithmetical facts: Evidence from two rehabilitation studies. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 32(1), 49–66.Google Scholar
  42. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174–8179.CrossRefGoogle Scholar
  43. Grabner, R. H., Ansari, D., Koschutnig, K., Reishofer, G., Ebner, F., & Neuper, C. (2009). To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. Neuropsychologia, 47(2), 604–608.Google Scholar
  44. Groen, G. J., & Parkman, J. M. (1972). A chronometric analysis of simple addition. Psychological Review, 79(4), 329–343.CrossRefGoogle Scholar
  45. Gruber, O., Indefrey, P., Steinmetz, H., & Kleinschmidt, A. (2001). Dissociating neural correlates of cognitive components in mental calculation. Cerebral cortex (New York, N.Y.: 1991), 11(4), 350–359.Google Scholar
  46. Hart, J, Jr., Kraut, M. A., Kremen, S., Soher, B., & Gordon, B. (2000). Neural substrates of orthographic lexical access as demonstrated by functional brain imaging. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 13(1), 1–7.Google Scholar
  47. Henschen, S. (1920). Klinische und anatomische beitraege sur pathologie des Gehirns. Stockholm, Sweden: Nordiska Bokhandeln.Google Scholar
  48. Hitch, G. J., & McAuley, E. (1991). Working memory in children with specific arithmetical learning difficulties. British Journal of Psychology, 82(3), 375–386.Google Scholar
  49. Ischebeck, A., Zamarian, L., Egger, K., Schocke, M., & Delazer, M. (2007). Imaging early practice effects in arithmetic. Neuroimage, 36(3), 993–1003.CrossRefGoogle Scholar
  50. Ischebeck, A., Zamarian, L., Siedentopf, C., Koppelstatter, F., Benke, T., Felber, S., et al. (2006). How specifically do we learn? Imaging the learning of multiplication and subtraction. Neuroimage, 30(4), 1365–1375.CrossRefGoogle Scholar
  51. Kahn, H. J., & Whitaker, H. A. (1991). Acalculia: An historical review of localization. Brain and Cognition, 17, 102–115.CrossRefGoogle Scholar
  52. Kail, R., & Park, Y. S. (1994). Processing time, articulation time, and memory span. Journal of Experimental Child Psychology, 57(2), 281–291.CrossRefGoogle Scholar
  53. Kail, R., & Salthouse, T. A. (1994). Processing speed as a mental capacity. Acta Psychologica, 86(2–3), 199–225.CrossRefGoogle Scholar
  54. Kronbichler, M., Hutzler, F., Wimmer, H., Mair, A., Staffen, W., & Ladurner, G. (2004). The visual word form area and the frequency with which words are encountered: Evidence from a parametric fMRI study. Neuroimage, 21(3), 946–953.CrossRefGoogle Scholar
  55. Kwon, H., Reiss, A. L., & Menon, V. (2002). Neural basis of protracted developmental changes in visuo-spatial working memory. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 13336–13341.CrossRefGoogle Scholar
  56. Lee, K. M. (2000). Cortical areas differentially involved in multiplication and subtraction: A functional magnetic resonance imaging study and correlation with a case of selective acalculia. Annals of Neurology, 48(4), 657–661.CrossRefGoogle Scholar
  57. LeFevre, J. A., Bisanz, J., & Mrkonjic, L. (1988). Cognitive arithmetic: Evidence for obligatory activation of arithmetic facts. Memory and Cognition, 16, 45–53.Google Scholar
  58. Lyon, G. R., & Rumsey, J. M. (1996). Neuroimaging: A window to the neurological foundations of learning and behavior in children. Baltimore, MD: Paul H. Brooke.Google Scholar
  59. McCarthy, R. A., & Warrington, E. K. (1988). Evidence for modality-specific meaning systems in the brain. Nature, 334(6181), 428–430.CrossRefGoogle Scholar
  60. McCloskey, M., Harley, W., & Sokol, S. M. (1991). Models of arithmetic fact retrieval: An evaluation in light of findings from normal and brain-damaged subjects. Journal of Experimental Psychology: Learning Memory and Cognition, 17(3), 377–397.CrossRefGoogle Scholar
  61. McNeil, J. E., & Warrington, E. K. (1994). A dissociation between addition and subtraction with written calculation. Neuropsychologia, 32(6), 717–728.CrossRefGoogle Scholar
  62. Menon, V., Boyett-Anderson, J. M., & Reiss, A. L. (2005). Maturation of medial temporal lobe response and connectivity during memory encoding. Cognitive Brain Research, 25(1), 379–385.CrossRefGoogle Scholar
  63. Menon, V., Mackenzie, K., Rivera, S. M., & Reiss, A. L. (2002). Prefrontal cortex involvement in processing incorrect arithmetic equations: Evidence from event-related fMRI. Human Brain Mapping, 16(2), 119–130.CrossRefGoogle Scholar
  64. Menon, V., Rivera, S. M., White, C. D., Eliez, S., Glover, G. H., & Reiss, A. L. (2000a). Functional optimization of arithmetic processing in perfect performers. Cognitive Brain Research, 9(3), 343–345.CrossRefGoogle Scholar
  65. Menon, V., Rivera, S. M., White, C. D., Glover, G. H., & Reiss, A. L. (2000b). Dissociating prefrontal and parietal cortex activation during arithmetic processing. Neuroimage, 12(4), 357–365.CrossRefGoogle Scholar
  66. Menon, V., White, C. D., Eliez, S., Glover, G. H., & Reiss, A. L. (2000c). Analysis of a distributed neural system involved in spatial information, novelty, and memory processing. Human Brain Mapping, 11(2), 117–129.CrossRefGoogle Scholar
  67. Meyer, M. L., Salimpoor, V. N., Wu, S. S., Geary, D., & Menon, V. (2009). Differential contribution of specific working memory components to mathematical skills in 2nd and 3rd graders. Learning and Individual Differences (in press).Google Scholar
  68. Miller, K., Perlmutter, M., & Keating, D. (1984). Cognitive arithmetic: Comparison of operations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 46–60.CrossRefGoogle Scholar
  69. Niedeggen, M., Rosler, F., & Jost, K. (1999). Processing of incongruous mental calculation problems: Evidence for an arithmetic N400 effect. Psychophysiology, 36(3), 307–324.CrossRefGoogle Scholar
  70. Ofen, N., Kao, Y. C., Sokol-Hessner, P., Kim, H., Whitfield-Gabrieli, S., & Gabrieli, J. D. (2007). Development of the declarative memory system in the human brain. Nature Neuroscience, 10(9), 1198–1205.CrossRefGoogle Scholar
  71. Olesen, P. J., Macoveanu, J., Tegnér, J., & Klingberg, T. (2007). Brain activity related to working memory and distraction in children and adults. Cerebral Cortex, 17(5), 1047–1054.CrossRefGoogle Scholar
  72. Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79.CrossRefGoogle Scholar
  73. Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annual Review of Neuroscience, 25, 563–593.CrossRefGoogle Scholar
  74. Passolunghi, M. C., & Siegel, L. S. (2001). Short-term memory, working memory, and inhibitory control in children with difficulties in arithmetic problem solving. Journal of Experimental Child Psychology, 80(1), 44–57.CrossRefGoogle Scholar
  75. Passolunghi, M. C., & Siegel, L. S. (2004). Working memory and access to numerical information in children with disability in mathematics. Journal of Experimental Child Psychology, 88(4), 348–367.CrossRefGoogle Scholar
  76. Price, C. J., & Devlin, J. T. (2003). The myth of the visual word form area. Neuroimage, 19(3), 473–481.CrossRefGoogle Scholar
  77. Price, C. J., & Devlin, J. T. (2004). The pro and cons of labelling a left occipitotemporal region: “The visual word form area”. Neuroimage, 22(1), 477–479.CrossRefGoogle Scholar
  78. Rickard, T. C., & Bourne, L. E. (1996). Some tests of an identical elements model of basic arithmetic skills. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 1281–1295.CrossRefGoogle Scholar
  79. Rickard, T. C., Romero, S. G., Basso, G., Wharton, C., Flitman, S., & Grafman, J. (2000). The calculating brain: An fMRI study. Neuropsychologia, 38(3), 325–335.CrossRefGoogle Scholar
  80. Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithmetic: Evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex, 15(11), 1779–1790.CrossRefGoogle Scholar
  81. Rosenberg-Lee, M., Tsang, J. M., & Menon, V. (2009). Symbolic, numeric, and magnitude representations in the parietal cortex. Behavioral Brain Sciences, 32(3-4), 350–351. discussion 356–373.CrossRefGoogle Scholar
  82. Salimpoor, V. N., Chang, C., & Menon, V. (2009). Neural basis of repetition priming during mathematical cognition: Repetition suppression or repetition enhancement? J Cogn Neurosci.Google Scholar
  83. Schacter, D. L., & Wagner, A. D. (1999). Medial temporal lobe activations in fMRI and PET studies of episodic encoding and retrieval. Hippocampus, 9(1), 7–24.CrossRefGoogle Scholar
  84. Schneider, W., & Goswami, U. (2002). Memory development in childhood. In Anonymous (Ed.), Blackwell handbook of childhood cognitive development (pp. 236–256). London, UK: Blackwell.Google Scholar
  85. Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., et al. (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28(14), 3586–3594.CrossRefGoogle Scholar
  86. Siegel, L. S., & Ryan, E. B. (1989). The development of working memory in normally achieving and subtypes of learning disabled children. Child Development, 60(4), 973–980.CrossRefGoogle Scholar
  87. Siegler, R. S. (1998). Children’s Thinking. New Jersey: Prentice Hall.Google Scholar
  88. Siegler, R. S., & Shrager, J. (1984). Strategy choice in addition and subtraction: How do children know what to do? In C. Sophian (Ed.), Origins of cognitive skills (pp. 229–293). Hillsdale, NJ: Erlbaum.Google Scholar
  89. Siegler, R. S., & Stern, E. (1998). Conscious and unconscious strategy discoveries: A microgenetic analysis. Journal of Experimental Psychology: General, 127(4), 377–397.CrossRefGoogle Scholar
  90. Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33(3), 475–487.CrossRefGoogle Scholar
  91. Squire, L. R., Stark, C. E., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306.CrossRefGoogle Scholar
  92. Supekar, K., Musen, M., & Menon, V. (2009). Development of large-scale functional brain networks in children. PLoS Biology, 7(7), e1000157.CrossRefGoogle Scholar
  93. Suzuki, W. A., & Amaral, D. G. (1994). Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents. The Journal of Comparative Neurology, 350(4), 497–533.CrossRefGoogle Scholar
  94. Swanson, H. L. (1994). Short-term memory and working memory: Do both contribute to our understanding of academic achievement in children and adults with learning disabilities? Journal of Learning Disabilities, 27(1), 34–50.CrossRefGoogle Scholar
  95. Swanson, H. L., Cooney, J. B., & Brock, S. (1993). The influence of working memory and classification ability on children’s word problem solution. Journal of Experimental Child Psychology, 55(3), 374–395.CrossRefGoogle Scholar
  96. Swanson, H. L., & Sachse-Lee, C. (2001). Mathematical problem solving and working memory in children with learning disabilities: Both executive and phonological processes are important. Journal of Experimental Child Psychology, 79(3), 294–321.CrossRefGoogle Scholar
  97. Takayama, Y., Sugishita, M., Akiguchi, I., & Kimura, J. (1994). Isolated acalculia due to left parietal lesion. Archives of Neurology, 51(3), 286–291.Google Scholar
  98. Temple, C. M. (2002). Developmental dyscalculia. In F. B. A. J. Grafman (Ed.), Handbook of Neuropsychology (Vol. 6: Child Psychology, pp. 211–222). North Holland: Elsevier Science Publishers.Google Scholar
  99. van der Sluis, S., van der Leij, A., & de Jong, P. F. (2005). Working memory in Dutch children with reading- and arithmetic-related LD. Journal of Learning Disabilities, 38(3), 207–221.CrossRefGoogle Scholar
  100. van Harskamp, N. J., & Cipolotti, L. (2001). Selective impairments for addition, subtraction and multiplication. implications for the organisation of arithmetical facts. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 37(3), 363–388.Google Scholar
  101. van Merrienboer, J. J. G., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147–177.CrossRefGoogle Scholar
  102. Venkatraman, V., Ansari, D., & Chee, M. W. (2005). Neural correlates of symbolic and non-symbolic arithmetic. Neuropsychologia, 43(5), 744–753.CrossRefGoogle Scholar
  103. Warrington, E. K. (1982). The fractionation of arithmetical skills: A single case study. Quarterly Journal of Experimental Psychology, 34, 31–51.Google Scholar
  104. Westerberg, H., & Klingberg, T. (2007). Changes in cortical activity after training of working memory–a single-subject analysis. Physiology & Behavior, 92(1–2), 186–192.CrossRefGoogle Scholar
  105. Wilson, K. M., & Swanson, H. L. (2001). Are mathematics disabilities due to a domain-general or a domain-specific working memory deficit? Journal of Learning Disabilities, 34(3), 237–248.CrossRefGoogle Scholar
  106. Wu, S. S., Chang, T. T., Majid, A., Caspers, S., Eickhoff, S. B., & Menon, V. (2009). Functional heterogeneity of inferior parietal cortex during mathematical cognition assessed with cytoarchitectonic probability maps. Cereb Cortex.Google Scholar
  107. Wu, S. S., Meyer, M. L., Maeda, U., Salimpoor, V., Tomiyama, S., Geary, D. C., et al. (2008). Standardized assessment of strategy use and working memory in early mental arithmetic performance. Developmental Neuropsychology, 33(3), 365–393.CrossRefGoogle Scholar
  108. Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation. Neuroimage, 13(2), 314–327.CrossRefGoogle Scholar
  109. Zamarian, L., Ischebeck, A., & Delazer, M. (2009). Neuroscience of learning arithmetic-evidence from brain imaging studies. Neuroscience and Biobehavioral Reviews, 33(6), 909–925.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2010

Authors and Affiliations

  1. 1.Symbolic Systems Program, Program in Neuroscience, Department of Psychiatry & Behavioral Sciences, and Department of Neurology & Neurological SciencesStanford University School of MedicineStanfordUSA

Personalised recommendations