, Volume 42, Issue 1, pp 19–31 | Cite as

Concrete models and dynamic instruments as early technology tools in classrooms at the dawn of ICMI: from Felix Klein to present applications in mathematics classrooms in different parts of the world

  • Maria G. Bartolini Bussi
  • Daina Taimina
  • Masami Isoda
Original Article


Most national curricula for both primary and secondary grades encourage the active involvement of learners through the manipulation of materials (either concrete models or dynamic instruments). This trend is rooted in the emphasis given, at the dawn of ICMI, to what might be called an experimental approach: the links between mathematics, natural sciences and technology were in the foreground in the early documents of ICMI and also in the papers of its first president, Felix Klein. However, the presence of this perspective in teaching practice is uneven. In this paper, we shall reconstruct first an outline of what happened in three different parts of the world (Europe, USA and Japan) under the direct influence of Klein. Then, we shall report classroom activities realized in the same regions in three different research centres: the Laboratory of Mathematical Machines at the University of Modena and Reggio Emilia, Italy (http://www.mmlab.unimore.it); the pedagogical space of Kinematical Model for Design Digital Library at Cornell, USA (http://kmoddl.library.cornell.edu/); and the Centre for Research on International Cooperation in Educational Development at Tsukuba University, Japan (http://math-info.criced.tsukuba.ac.jp/). They have maintained the reference to concrete materials (either models or instruments), with original interpretations that take advantage of the different cultural conditions. Although in all cases the reference to history is deep and systematic, the synergy with mathematical modelling and with information and communication technologies has been exploited, not to substitute but to complement the advantages of the direct manipulations.


Models Instruments ICT ICMI Felix Klein 


  1. Bartolini Bussi, M. G. (1998). Drawing instruments: Theories and practices from history to didactics. Documenta mathematica, extra volume ICM98, pp. 735–746.Google Scholar
  2. Bartolini Bussi, M. G. (2001). The geometry of drawing instruments: Arguments for a didactical use of real and virtual copies. Cubo, 3(2), 27–54.Google Scholar
  3. Bartolini Bussi, M. G., & Pergola, M. (1996). History in the mathematics classroom: Linkages and kinematic geometry. In H. N. Jahanke, N. Knoche, & M. Otte (Eds.), Geschichte der Mathematik in der Lehre (pp. 36–67). Goettingen: Vandenhoek & Ruprecht.Google Scholar
  4. Campedelli, L. (1958). I Modelli Geometrici. In Commissione internazionale per lo studio e il miglioramento dell'insegnamento della matematica (Ed.), Il Materiale per L’insegnamento della Matematica (pp. 143–172). Firenze: La Nuova Italia.Google Scholar
  5. Castelnuovo, G. (1928). La Geometria Algebrica e la Scuola Italiana. Atti del Congresso Internazionale dei Matematici (Vol. I, p. 194). Bologna: Zanichelli.Google Scholar
  6. Castelnuovo, E. (2008). L’Officina Matematica. Bari: Edizioni La Meridiana.Google Scholar
  7. Cavalieri, B. (1632). Lo specchio ustorio (2001). Firenze: Giunti.Google Scholar
  8. Clairaut, A. C. (1741). Élements de Geometrie (2006). Éditions Jacques Gabay.Google Scholar
  9. Comenius, I. A. (1657). Didactica Magna (1986). Akal Ediciones.Google Scholar
  10. Fischer, G. (Ed.). (1986). Mathematical models: From the collections of Universities and Museums. Braunschweig/Wiesbaden: Friedr. Vieweg & Sohn.Google Scholar
  11. France National Constitution. (1791). http://sourcebook.fsc.edu/history/constitutionof1791.html. Accessed 25 August 2009.
  12. Giacardi, L. (2008). Bibiligograpy of Castelnuovo, G. http://www.icmihistory.unito.it/portrait/castelnuovo.php. Accessed 21 November 2008.
  13. Henderson, D., & Taimina, D. (2005a). Mathematical aspects of the Peaucellier-Lipkin linkage. http://kmoddl.library.cornell.edu/tutorials/11/. Accessed 21 November 2008.
  14. Henderson, D., & Taimina, D. (2005b). Experiencing geometry: Euclidean and non-euclidean with history. Upper Saddle River: Pearson Prentice Hall.Google Scholar
  15. Isoda, M. (2004). The development of mathematics education. In Japan International Cooperation Agency (Ed.), The history of Japan’s educational development (pp. 159–172). Tokyo: Institute for International Cooperation.Google Scholar
  16. Isoda, M. (2008). Sample videos developed by Isoda, M. and Baldin, Y. Y. in 2008 at UFRJ on HTEM4. http://math-info.criced.tsukuba.ac.jp/software/dbook/dbook_eng/dbook_eng05.html. Accessed 21 November 2008.
  17. Isoda, M., Hara, K., Iijima, Y., Uehara, E., & Watanabe, H. (2006). e-Textbooks: Advancing mathematics teaching and learning into the future mathematics. In Chu, S. C. et al. (Eds.), Proceedings of the eleventh Asian technology conference in mathematics (pp. 54–63). VA: ATCM, Inc.Google Scholar
  18. Isoda, M., & Matsuzaki, A. (2003). The roles of mediational means for mathematization: The case of mechanics and graphing tools. Journal of Japan Society of Science Education, 27(4), 245–257.Google Scholar
  19. Isoda, M., Suzuki, A., Ohneda, Y., Sakamoto, M., Mizutahi, N., & Kawazaki, N. (2001). LEGO project. Tsukuba Journal of Educational Study in Mathematics, 20, 77–92.Google Scholar
  20. Kempe, A. B. (1877). How to draw a straight line. London: Macmillan.Google Scholar
  21. Klein, F. (1924–1925). Elementary mathematics from an advanced standpoints. (Hedrick, E. R., & Noble, C. A., translated, 1939). NY: Macmillan.Google Scholar
  22. Klein, F., & Riecke, E. (1904). Neue Beiträge zur Frage des Mathematischen und Physikalischen Unterrichts an den Höheren Schulen. Leipzig: Teubner.Google Scholar
  23. Koenigs, G. (1897). Leçons De Cinematique Paris A. Hermann. http://www.archive.org/stream/leonsdecinma00koenuoft#page/242/mode/2up. Accessed 25 August 2009.
  24. Kuroda, M. (1920). Geometry for secondary school. Tokyo: Baifu-kan.Google Scholar
  25. Kuroda, M. (1927). New issues of mathematics teaching (selected publication of his posthumous manuscripts). Tokyo: Baifu-kan.Google Scholar
  26. Le Blanc, M. (n.d.). Friedrich Froebel: His life and influence on education. http://www.communityplaythings.co.uk/resources/articles/friedrich-froebel.html.
  27. Maclaurin, C. (1720). Geometria Organica, Sive Descriptio Linearum Curvarum Universalis. Londini.Google Scholar
  28. Maschietto, M. (2005). The laboratory of mathematical machines of modena. Newsletter of the European Mathematical Society, 57, 34–37.Google Scholar
  29. Monbusyo Approved. (1943). Mathematics textbooks for secondary school (II). Tokyo: TyutoGakkoKyokasyo Pub.Google Scholar
  30. Moon, F. C. (2002). Franz Reuleaux: Contributions to 19th C. kinematics and theory of machines. http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.htmm/2002-2?abstract=. Accessed 21 November 2008.
  31. Mueller, W. (2001). Mathematical Wunderkammern. MAA Monthly, 108, 785–796.CrossRefGoogle Scholar
  32. Palladino, N. (n.d.). http://www.dma.unina.it/~nicla.palladino/catalogo/. Accessed 25 August 2009.
  33. Pan, B., Gay, G. K., Saylor, J., Hembrooke, H. A., & Henderson, D. (2004). Usability, learning, and subjective experience: User evaluation of K-MODDL in an undergraduate class. In H. Chen, M. Christel, & E. Lim (Eds.), Proceedings of the fourth ACM/IEEE joint conference on digital libraries (JCDL’ 04) (pp. 188–189). New York: ACM.CrossRefGoogle Scholar
  34. Parshall, K. H., & Rowe, D. (1991). The emergence of the American mathematical research community 1876–1900: J. J. Sylvester, Felix Klein, and E. H. Moore. Providence: American Mathematical Society, London Mathematical Society (Co-publication).Google Scholar
  35. Perry, J. (1913). Elementary practical mathematics. London: Macmillan.Google Scholar
  36. Reuleaux, F. (1876). The kinematics of machinery: Outlines of a theory of machines. London: Macmillan (reprinted New York: Dover, 1963).Google Scholar
  37. Ruthven, K. (2008). Mathematical technologies as a vehicle for intuition and experiment: a foundational theme of the ICMI, and a continuing preoccupation. Paper prepared for the ICMI centennial symposium, Rome 2008. http://www.unige.ch/math/EnsMath/Rome2008/WG4/Papers/RUTHVEN.pdf. Accessed 21 November 2008.
  38. Sanden, H. V. (1914). Praktishe analysis. Leipzig und Berlin: Teubner.Google Scholar
  39. Schilling, M. (1911). Catalog matematischer Modelle für den Höheren Mathematischen Unterricht. Leipzig: Martin Schilling.Google Scholar
  40. Schooten, F. V. (1646). De organica Conicarum Sectionum Constructione. Leyden.Google Scholar
  41. Schubring, G. (1989). Pure and applied mathematics in divergent institutional settings. In D. E. Rowe & J. McCleary (Eds.), Ideas and reception (pp. 171–207). Boston: Academic Press.Google Scholar
  42. Shell-Gellasch, A., & Acheson, B. (2007). Geometric string models of descriptive geometry, hands on history. In A. Shell-Gelasch (Ed.), MAA notes #72 (pp. 49–62). Washington, DC: MAA.Google Scholar
  43. Smith, D. E. (1913). Intuition and experiment in mathematical teaching in the secondary schools. L’Einseignement Mathématique, 14, 507–534.Google Scholar
  44. Taimina, D. (2005a). Linkages. http://kmoddl.library.cornell.edu/linkages/. Accessed 21 November 2008.
  45. Taimina, D. (2005b). How to draw a straight line. http://kmoddl.library.cornell.edu/tutorials/04/. Accessed 21 November 2008.
  46. Taimina, D., & Henderson, D. (2005). Reuleaux Triangle, learning module. http://kmoddl.library.cornell.edu/tutorials/02/. Accessed 21 November 2008.

Copyright information

© FIZ Karlsruhe 2009

Authors and Affiliations

  • Maria G. Bartolini Bussi
    • 1
  • Daina Taimina
    • 2
  • Masami Isoda
    • 3
  1. 1.Dipartimento di MatematicaUniversità di Modena e Reggio EmiliaModenaItaly
  2. 2.Department of MathematicsCornell UniversityIthacaUSA
  3. 3.Graduate School of Human Comprehensive ScienceUniversity of TsukubaTsukubaJapan

Personalised recommendations