Advertisement

ZDM

, Volume 42, Issue 1, pp 33–47 | Cite as

Mathematics learning and tools from theoretical, historical and practical points of view: the productive notion of mathematics laboratories

  • Michela MaschiettoEmail author
  • Luc Trouche
Original Article

Abstract

In our research work, we have looked at the way in which artefacts become, for teachers as well as for students, instruments of their mathematical activity. The issues related to the use of tools and technologies in mathematical education are now widely considered. A look to history highlights the different ways in which the same questions have been studied at different times and in different places. This suggests that the contribution of artefacts to mathematics learning should be considered in terms of various contexts. Our “visits” to these contexts will be guided by the coordination of two main theoretical frameworks, the instrumental approach and the semiotic mediation approach from the perspective of mathematics laboratory. This journey through history and schooling represents a good occasion to address some questions: Are there “good” contexts in which to develop mathematical instruments? Are there “good” teaching practices which assist students’ instrumental geneses and construct mathematical meanings? How is it possible to promote such teaching practices? Some study cases are discussed.

Keywords

Artefacts Instruments Instrumentalisation Instrumentation Orchestration Semiotic mediation 

Notes

Acknowledgments

We wish to sincerely thank Lulu Healy for her kind help in rereading our paper and helping us to correct our English language, and, more generally, for her valuable advice.

References

  1. AA.VV. UMI (2004). In G. Anichini, F. Arzarello, L. Ciarrapico, & O. Robutti (Eds.), Matematica 2003. La matematica per il cittadino. Attività didattiche e prove di verifica per un nuovo curricolo di Matematica (Ciclo secondario). Lucca: Matteoni stampatore. English version: http://umi.dm.unibo.it/italiano/Didattica/ICME10.pdf. Accessed May 2009.
  2. Adler, J. (2000). Conceptualising resources as a theme for teacher education. Journal of Mathematics Teacher Education, 3, 205–224.CrossRefGoogle Scholar
  3. Ainley, J. (2000). Transparency in graphs and graphing tasks: An iterative design process. Journal of Mathematical Behavior, 19, 365–384.CrossRefGoogle Scholar
  4. Barozzi, I., & Danti, E. (1583). Le due regole della prospettiva prattica di M. Iacomo Barozzi da Vignola, Con i Commentari del Reuerendo Padre Maestro Egnatio Danti dell’Ordine de’ Predicatori Mattematico dello Studio di Bologna. Bologna: Edizione Zannetti.Google Scholar
  5. Bartolini Bussi, M. G. (1996). Mathematical discussion and perspective drawing in primary school. Educational Studies in Mathematics, 31, 11–41.CrossRefGoogle Scholar
  6. Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: Artifacts and signs after a Vygotskian perspective. In L. English (Ed.), Handbook of international research in mathematics education (2nd ed., pp. 746–783). New York: Routledge.Google Scholar
  7. Bartolini Bussi, M. G., & Maschietto, M. (2006). Macchine matematiche: dalla storia alla scuola. Collana UMI Convergenze. Milano: Springer.Google Scholar
  8. Bartolini Bussi, M. G., & Maschietto, M. (2008). Machines as tools in teacher education. In D. Tirosh, & T. Wood (Eds.), The international handbook of mathematics teacher education, Tools and Processes in Mathematics Teacher Education. (Vol. 2, pp.183–208). Rotterdam: SensePublisher.Google Scholar
  9. Berdeillé, Ch. (1902). Sur l’usage du papier rayé en algèbre. L’enseignement mathématique, 4, 455.Google Scholar
  10. Borel, E. (1904). Les exercices pratiques de mathématiques dans l’enseignement secondaire. In Conference at Musée Pédagogique in Paris, Gazette des Mathematiciens, Juillet 2002 (no. 93, pp. 47–64).Google Scholar
  11. Brousseau, G. (1997). Theory of didactic situations. Dordrecht: Kluwer Academic Publishers.Google Scholar
  12. Cerulli, M., Trgalova, J., Maracci, M., Psycharis, G., & Georget, J.-P. (2008). Comparing theoretical frameworks enacted in experimental research: TELMA experience. ZDM The International Journal on Mathematics Education, 40, 201–213. doi: 10.1007/s11858-008-0075-2.CrossRefGoogle Scholar
  13. Churchhouse, R. F., Cornu, B., Ershov, A. P., Howson, A. G., Kahane, J. P., van Lint, J. H., et al. (1985). An ICMI discussion document. The influence of computers and informatics on mathematics and its teaching. Strasbourg: IREM, ULP.Google Scholar
  14. CIEM. (1908). Les tendances modernes de l’enseignement mathématique. L’enseignement mathématiques, 10, 454.Google Scholar
  15. Drijvers, P., Doorman, M., Boon, P., & van Gisbergen, S. (2009). Instrumental orchestration, theory and practice. In F. Arzarello (Ed.), Proceedings of the sixth conference of the European Society for research in mathematics education. Lyon (to appear).Google Scholar
  16. Dürer, A. (1525). Underweysung der Messung mit Zirkel und Richtscheit. French translation: Peiffer, J. (1995). Géométrie. Paris: Edition Seuil.Google Scholar
  17. Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers? Educational Studies in Mathematics, 71, 199–218. doi: 10.1007/s10649-008-9159.CrossRefGoogle Scholar
  18. Guin, D., Ruthven, K., & Trouche, L. (Eds.). (2005). The didactical challenge of symbolic calculators: turning a computational device into a mathematical instrument. New York: Springer.Google Scholar
  19. Guin, D., & Trouche, L. (2006). Distance training, a key mode to support teachers in the integration of ICT? Towards collaborative conception of living pedagogical resources. In M. Bosch (Ed.), Proceedings of the fourth conference of the European Society for research in mathematics education (pp. 1020–1030). FUNDEMI IQS Universitat. http://ermeweb.free.fr/CERME4/. Accessed May 2009.
  20. Hivon, L., Péan, M., & Trouche, L. (2008). D’un réseau de calculatrices à la construction collaborative du savoir dans la classe. Repères-IREM, 72, 79–102.Google Scholar
  21. Hoyles, C., & Lagrange, J. B. (2005). Mathematical education and digital technologies: Rethinking the terrain. Discussion document for 17th ICMI study. http://www.math.msu.edu/~nathsinc/ICMI/. Accessed May 2009.
  22. Hoyles, C., & Noss, R. (2003). What can digital technologies take from and bring to research in mathematics education? In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Second international handbook of mathematics education (Vol. 1, pp. 323–349). Dordrecht: Kluwer Academic Publishers.Google Scholar
  23. Kahane, J. P. (2006). Cooperation and competition as a challenge in and beyond the classroom. ICMI Study N. 16 Conference. http://www.amt.canberra.edu.au/icmis16pkahane.pdf. Accessed May 2009.
  24. Lagrange, J. B., Artigue, M., Laborde, C., & Trouche, L. (2003). Technology and mathematics education: A multidimensional study of the evolution of research and innovation. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Second international handbook of mathematics education (pp. 239–271). Dordrecht: Kluwer Academic Publishers.Google Scholar
  25. Maschietto, M. (2005). The laboratory of mathematical machines of Modena. Newsletter of the European Mathematical Society, 57, 34–37.Google Scholar
  26. Maschietto, M., & Ferri, F. (2007). Artefacts, schèmes d’utilisation et significations arithmétiques. In J. Szendrei (Ed.), Mathematical activity in classroom practice and as research object in didactics: Two complementary perspectives, Proceeding of the CIEAEM 59 (pp. 179–183). Dobogókő, Hungary.Google Scholar
  27. Meira, L. (1998). Making sense of instructional devices: The emergence of transparency in mathematical activity. Journal for Research in Mathematics Education, 29(2), 121–142.CrossRefGoogle Scholar
  28. Nagaoka, R., et al. (2000). Chapter 10. Non-standard media and other resources. In J. Fauvel & J. van Maanen (Eds.), History in mathematics education. The ICMI study (Vol. 10, pp. 329–370). Dordrecht: Kluwer Academic Publishers.Google Scholar
  29. Petrovitch, M. (1899). Sur l’intégration hydraulique des équations différentielles. L’enseignement mathématique, 1, 58–59.Google Scholar
  30. Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting theoretical approaches: First steps towards a conceptual framework. ZDM The International Journal on Mathematics Education, 40, 165–178. doi: 10.1007/s11858-008-0086-z.CrossRefGoogle Scholar
  31. Proust, C. (2000). La multiplication babylonienne: la part non écrite du calcul. Revue d’histoire des mathématiques, 6, 293–303.Google Scholar
  32. Robutti, O. (2010). Graphic calculators and connectivity software to be a community of mathematics practitioners. ZDM The International Journal on Mathematics Education (this issue).Google Scholar
  33. Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H., & Hemmo, V. (2007). Science education now: A renewed pedagogy for the future of Europe. European Commission. http://ec.europa.eu/research/science-society/document_library/pdf_06/report-rocard-on-science-education_en.pdf. Accessed May 2009.
  34. Schärlig, A. (2003). Compter avec des jetons. Lausanne: Presses polytechniques et universitaires romanes.Google Scholar
  35. Trouche, L. (2004). Managing complexity of human/machine interactions in computerized learning environments: Guiding student’s command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9(3), 281–307.CrossRefGoogle Scholar
  36. Trouche, L., & Hivon, L. (2009). Connectivity: New challenges for the ideas of webbing and orchestrations. In: C. Hoyles, & J. B. Lagrange (Eds.), Mathematical education and digital technologies: Rethinking the terrain, Proceedings of the 17th ICMI study. New York: Springer.Google Scholar
  37. Verillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrument activity. European Journal of Psychology of Education, 9(3), 77–101.CrossRefGoogle Scholar
  38. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.Google Scholar
  39. Wartofsky, M. (1979). Perception, representation, and the forms of action: Towards an historical epistemology. In M. Wartofsky (Ed.), Models. Representation, and the scientific understanding (pp. 188–209). Dordrecht: Reidel.Google Scholar

Copyright information

© FIZ Karlsruhe 2009

Authors and Affiliations

  1. 1.Università di Modena e Reggio EmiliaModenaItaly
  2. 2.National Institute for Pedagogical ResearchLyonFrance

Personalised recommendations