Advertisement

ZDM

, Volume 40, Issue 5, pp 791–811 | Cite as

Future teachers’ professional knowledge on argumentation and proof: a case study from universities in three countries

  • Björn Schwarz
  • Issic K. C. Leung
  • Nils Buchholtz
  • Gabriele Kaiser
  • Gloria Stillman
  • Jill Brown
  • Colleen Vale
Original Article

Abstract

In this paper, qualitative results of a case study about the professional knowledge in the area of argumentation and proof of future teachers from universities in three countries are described. Based on results of open questionnaires, data about the competencies these future teachers have in the areas of mathematical knowledge and knowledge of mathematics pedagogy are presented. The study shows that the majority of the future teachers at the participating universities situated in Germany, Hong Kong and Australia, were not able to execute formal proofs, requiring only lower secondary mathematical content, in an adequate and mathematically correct way. In contrast, in all samples there was evidence of at least average competencies of pedagogical content reflection about formal and pre-formal proving in mathematics teaching. However, it appears that possessing a mathematical background as mandated for teaching and having a high affinity with proving in mathematics teaching at the lower secondary level are not a sufficient preparation for teaching proof.

Keywords

Proof Teacher education Mathematical content knowledge Pedagogical content knowledge 

Notes

Acknowledgments

The assistance of Björn Wissmach, Ling Schuller, Paul White and Tak Wai Ip in either collecting or coding data is acknowledged. Analysis of the data from Australia has also been supported by a Joint Research Grant (international) from the University of Melbourne.

Supplementary material

11858_2008_150_MOESM1_ESM.doc (1.4 mb)
Supplementary electronic material MOESM1 (DOC 1454 kb)

References

  1. Adler, J., Ball, D. L., Krainer, K., Lin, F.-L., & Novotna, J. (2005a). Reflections on an emerging field: Researching mathematics teacher education. Educational Studies in Mathematics, 60(3), 359–381. doi: 10.1007/s10649-005-5072-6.CrossRefGoogle Scholar
  2. Adler, J., Davis, Z., Kazima, M., Parker, D., & Webb, L. (2005b). Working with students’ mathematical productions: Elaborating a key element of mathematical knowledge for teaching. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 1–8). Melbourne: PME.Google Scholar
  3. Ball, D. L., & Bass, H. (2003). Toward a practice-based theory of mathematical knowledge for teaching. In B. Davis & E. Simmt (Eds.), Proceedings of the 2002 annual meeting of the Canadian Mathematics Education Study Group (pp. 3–14). Edmonton: CMESG/GCEDM.Google Scholar
  4. Ball, D. L., Hill, H., & Bass, H. (2005). Knowing mathematics for teaching. American Educator, 29(3), 14–46.Google Scholar
  5. Baumert, J., & Kunter, M. (2006). Stichwort: Professionelle Kompetenz von Lehrkräften. Zeitschrift für Erziehungswissenschaft, 9, 469–520. doi: 10.1007/s11618-006-0165-2.CrossRefGoogle Scholar
  6. Blömeke, S. (2002). Universität und Lehrerausbildung. Bad Heilbrunn: Klinkhardt.Google Scholar
  7. Blömeke, S., Kaiser, G., & Lehmann, R. (Eds.). (2008). Professionelle Kompetenz angehender Lehrerinnen und Lehrer. Wissen, Überzeugungen und Lerngelegenheiten deutscher Mathematikstudierender und –referendare - Erste Ergebnisse zur Wirksamkeit der Lehrerausbildung. Münster: Waxmann.Google Scholar
  8. Blum, W., & Kirsch, A. (1991). Pre-formal proving: Examples and reflections. Educational Studies in Mathematics, 22(2), 183–203. doi: 10.1007/BF00555722.CrossRefGoogle Scholar
  9. Bromme, R. (1994). Beyond subject matter: A psychological topology of teachers’ professional knowledge. In R. Biehler, et al. (Eds.), Didactics of mathematics as a scientific discipline (pp. 73–88). Dordrecht: Kluwer.Google Scholar
  10. Bromme, R. (1995). What exactly is ‘pedagogical content knowledge’?—Critical remarks regarding a fruitful research program. In S. Hopmann & K. Riquarts (Eds.), Didaktik and/or Curriculum (pp. 205–216). Kiel: IPN.Google Scholar
  11. Brown, J., Stillman, G., Schwarz, B., & Kaiser, G. (2008). The case of mathematical proof in lower secondary school: Knowledge and competencies of pre-service teachers. In M. Goos, R. Brown & K. Makar (Eds.), Navigating currents and charting directions, Proceedings of the 31st annual conference of the Mathematics Education Research Group of Australasia, Brisbane (Vol. 1, pp. 85–91). Adelaide: MERGA.Google Scholar
  12. Brunner, M., Kunter, M., Krauss, S., Baumert, J., Blum, W., Dubberke, T., et al. (2006a). Welche Zusammenhänge bestehen zwischen dem fachspezifischen Professionswissen von Mathematiklehrkräften und ihrer Ausbildung sowie beruflichen Fortbildung? Zeitschrift für Erziehungswissenschaft, 9, 521–544. doi: 10.1007/s11618-006-0166-1.CrossRefGoogle Scholar
  13. Brunner, M., et al. (2006b). Die professionelle Kompetenz von Mathematiklehrkräften: Konzeptualisierung, Erfassung und Bedeutung für den Unterricht. Eine Zwischenbilanz des COACTIV-Projekts. In M. Prenzel & L. Allolio-Näcke (Eds.), Untersuchungen zur Bildungsqualität von Schule (pp. 54–82). Münster: Waxmann.Google Scholar
  14. Chick, H. L., Baker, M., Pham, T., & Cheng, H. (2006). Aspects of teachers’ pedagogical content knowledge for decimals. In J. Novotná, H. Moraová, M. Krátká & N. Stehlíková (Eds.), Proceedings of the 30th annual conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 297–304). Prague: PME.Google Scholar
  15. Corleis, A., Schwarz, B., Kaiser, G., & Leung, I. K. C. (2008). Content and pedagogical content knowledge in argumentation and proof of future teachers—a comparative case study in Germany and Hong Kong ZDM—The International Journal on Mathematics Education, this issue.Google Scholar
  16. Ferrini-Mundy, J., Schmidt, W. H., Bates, P., Joyner, T., Leroi, G., & Wigent, C. (2006). Knowing mathematics: What we can learn from teachers (PROM/SE research report nr. 2). East Lansing, MI: Michigan State University.Google Scholar
  17. Grigutsch, S., Raatz, U., & Törner, G. (1998). Einstellungen gegenüber Mathematik bei Mathematiklehrern. Journal fur Mathematik-Didaktik, 19(1), 3–45.Google Scholar
  18. Hanna, G., & de Villiers, M. (2008). ICMI study 19: Proof and proving in mathematics education. ZDM—The International Journal on Mathematics Education, 40(2), 329–336. doi: 10.1007/s11858-008-0073-4.CrossRefGoogle Scholar
  19. Healy, L., & Hoyles, C. (2007). Curriculum change and geometrical reasoning. In P. Boero (Ed.), Theorems in school: From history, epistemology and cognition to classroom practice (pp. 81–116). Rotterdam, The Netherlands: Sense.Google Scholar
  20. Heinze, A., & Kwak, J. Y. (2002). Informal prerequisites for informal proofs. ZDM, 34(1), 9–16. doi: 10.1007/BF02655688.CrossRefGoogle Scholar
  21. Hill, H. C. (2007). Mathematical knowledge of middle school teachers. Implications for the no child left behind policy initiative. Educational Evaluation and Policy Analysis, 29, 95–114. doi: 10.3102/0162373707301711.CrossRefGoogle Scholar
  22. Holland, G. (1996). Geometrie in der Sekundarstufe. Heidelberg: Spektrum.Google Scholar
  23. Jahnke, H. N. (2007). Proofs and hypotheses. ZDM—The International Journal on Mathematics Education, 39(1–2), 79–86. doi: 10.1007/s11858-006-0006-z.CrossRefGoogle Scholar
  24. Jones, K. (2000). The student experience of mathematical proof at university level. International Journal of Mathematical Education in Science and Technology, 31(1), 53–60. doi: 10.1080/002073900287381.CrossRefGoogle Scholar
  25. Klein, F. (1933). Elementarmathematik vom höheren Standpunkte aus (Vol. 1, 4th ed.). Berlin: Springer.Google Scholar
  26. Krainer, K., Goffree, F., & Berger, P. (1999). European research in mathematics education, I, III. From a study of teaching practices to Issues in teacher education. Osnabrück: Forschungsinstitut für Mathematikdidaktik.Google Scholar
  27. Krauss, S., Baumert, J., & Blum, W. (2008). Secondary mathematics teachers’ Pedagogical content knowledge and content knowledge: Validation of the COACTIV Constructs. ZDM—The International Journal on Mathematics Education, this issue.Google Scholar
  28. Leikin, R., & Levev-Waynberg, A. (2007). Exploring mathematics teacher knowledge to explain the gap between theory-based recommendations and school practice in the use of connecting tasks. Educational Studies in Mathematics, 66(3), 349–371. doi: 10.1007/s10649-006-9071-z.CrossRefGoogle Scholar
  29. Martin, W. G., & Harel, G. (1989). Proof frames of preservice elementary teachers. Journal for Research in Mathematics Education, 20(1), 41–51. doi: 10.2307/749097.CrossRefGoogle Scholar
  30. Mayring, P. (2000a). Qualitative Inhaltsanalyse: Grundlagen und Techniken. Weinheim: Deutscher Studien Verlag.Google Scholar
  31. Mayring, P. (2000b). Qualitative Inhaltsanalyse. Forum Qualitative Sozialforschung, On-line Journal 1(2). Accessible at: http://qualitative-research.net/fqs/fqs-d/2-00inhalt-d.htm (Retrieved August 10, 2007).
  32. Pandisco, E. A. (2002). Exploring the link between preservice teachers’ conception of proof and the use of dynamic geometry software. School Science and Mathematics, 102(5), 216–221.Google Scholar
  33. Schmidt, W. H., Ferrini-Mundy, J., Houang, R. T., & Cogan, L. S. (2006). Curriculum insights from PROM/SE. East Lansing: Michigan State University.Google Scholar
  34. Schmidt, W. H., Tatto, M. T., Bankov, K., Blömeke, S., Cedillo, T., Cogan, L., Han, S.-I., Houang, R., Hsieh, F.-J., Paine, L., Santillan, M.N. & Schwille, J. (2007). The preparation gap: Teacher education for middle school mathematics in six countries—Mathematics teaching in the 21st Century (MT21). East Lansing, MI: MSU [last access 12 December 2007, from http://usteds.msu.edu/related_research.asp].
  35. Schmidt, W., et al. (2008). Opportunity to learn in the preparation of mathematics teachers: Its structure and how it varies across six countries. ZDM—The International Journal on Mathematics Education, this issue.Google Scholar
  36. Schwarz, B., Kaiser, G., & Buchholtz, N. (2008). Vertiefende qualitative Analysen zur professionellen Komptenz angehender Mathematiklehrkräfte am Beispiel von Modellierung und Realitätsbezügen. In S. Blömeke, G. Kaiser & R. Lehmann (Eds.), Professionelle Kompetenz angehender Lehrerinnen und Lehrer. Wissen, Überzeugungen und Lerngelegenheiten deutscher Mathematik-Studierender und –referendare - Erste Ergebnisse zur Wirksamkeit der Lehrerausbildung (pp. 391–424). Münster: Waxmann.Google Scholar
  37. Selden, A., & Selden, J. (2003). Validations of proofs considered as texts: Can undergraduates tell whether an argument proves a theorem. Journal for Research in Mathematics Education, 34(1), 4–36.CrossRefGoogle Scholar
  38. Semadeni, Z. (1984). Action proofs in primary mathematics teaching and in teacher training. For the Learning of Mathematics, 4(1), 32–34.Google Scholar
  39. Shulman, L. S. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4–14.Google Scholar
  40. Stylianides, G., Stylianides, A., & Philippou, G. (2007). Preservice teachers’ knowledge of proof by mathematical induction. Journal of Mathematics Teacher Education, 10(3), 145–166. doi: 10.1007/s10857-007-9034-z.CrossRefGoogle Scholar
  41. Weinert, F. E. (1999). Konzepte der Kompetenz. Gutachten zum OECD-Projekt „Definition and Selection of Competencies: Theoretical and Conceptual Foundations (DeSeCo)”. Neuchatel, Schweiz: Bundesamt für Statistik.Google Scholar
  42. Wittmann, E. C. (1989). The mathematical training of teachers from the point of view of education. Journal fur Mathematik-Didaktik, 10, 291–308.Google Scholar
  43. Wittmann, E. C., & Müller, G. (1988). Wann ist ein Beweis ein Beweis? In P. Bender (Ed.), Mathematikdidaktik: Theorie und Praxis (pp. 237–257). Berlin: Cornelsen.Google Scholar
  44. Witzel, A. (1985). Das problemzentrierte Interview. In G. Jüttemann (Ed.), Qualitative Forschung in der Psychologie (pp. 227–256). Weinheim: Beltz.Google Scholar

Copyright information

© FIZ Karlsruhe 2008

Authors and Affiliations

  • Björn Schwarz
    • 1
  • Issic K. C. Leung
    • 2
  • Nils Buchholtz
    • 1
  • Gabriele Kaiser
    • 1
  • Gloria Stillman
    • 3
  • Jill Brown
    • 4
  • Colleen Vale
    • 5
  1. 1.University of HamburgHamburgGermany
  2. 2.The Hong Kong Institute of EducationTai PoHong Kong, China
  3. 3.University of MelbourneMelbourneAustralia
  4. 4.Australian Catholic UniversityMelbourneAustralia
  5. 5.Victoria UniversityMelbourneAustralia

Personalised recommendations