, 40:427 | Cite as

A method for revealing structures of argumentations in classroom proving processes

  • Christine Knipping
Original article


Proving processes in classrooms follow their own peculiar rationale. Reconstructing structures of argumentations in these processes reveals elements of this rationale. This article provides theoretical and methodological tools to reconstruct argumentation structures in proving processes and to shed light to their rationale. Toulmin’s functional model of argumentation is used for reconstructing local arguments, and it is extended to provide a ‘global’ model of argumentation for reconstructing proving processes in the classroom.


Mathematics Classroom Argumentation Structure Pythagorean Theorem Conceptual Argumentation Classroom Talk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank David Reid for his comments on earlier drafts of this article.


  1. Balacheff, N. (1988). Une Étude des Processus de Preuve en Mathématique chez les Élèves de Collège. Grenoble: Université Joseph Fourier.Google Scholar
  2. Balacheff, N. (1987). Processus de preuve et situations de validation. Educ Stud Math, 18(2), 147–176.CrossRefGoogle Scholar
  3. Balacheff, N. (1991). The benefits and limits of social interaction: The case of mathematical proof. In A. J. Bishop, E. Mellin-Olsen, & J. van Dormolen (Eds.), Mathematical knowledge: Its growth through teaching (pp. 175–192). Dordrecht: Kluwer.Google Scholar
  4. Bartolini Bussi, M. (1998). Joint activity in mathematics classrooms: A Vygotskian analysis. In F. Seeger, J. Voigt, & U. Waschescio (Eds.), The culture of the mathematics classroom (pp. 13–49). Cambridge: Cambridge University Press.Google Scholar
  5. Bauersfeld, H., Krummheuer, G., & Voigt, J. (1988). Interactional theory of learning and teaching mathematics and related microethnographical studies. In H. G. Steiner, A. Vermandel (Eds.), Foundations and methodology of the discipline of mathematics education (pp. 174–188). Antwerp: Proceedings of the TME ConferenceGoogle Scholar
  6. Chazan, D. (1993). High school geometry student’s justification for their views of empirical evidence and mathematical. Proof. Educ Stud Math, 24(4), 359–387.CrossRefGoogle Scholar
  7. Cobb, P. (1989). Experiential, cognitive, and anthropological perspectives in mathematics education. Learn Math, 9(2), 32–42.Google Scholar
  8. Duval, R. (1995). Sémiosis et pensée humaine. Registres sémiotiques et apprentissages intellectuels. Bern: Peter Lang.Google Scholar
  9. Fischbein, E. (1993). The theory of figural concepts. Educ Stud Math, 24(2), 139–162.CrossRefGoogle Scholar
  10. Garuti R., Boero P., & Lemut E. (1998) Cognitive Unity of theorems and difficulty of proof. In A. Olivier, K. Newstead (Eds.), Proceedings of the 22nd Conference of the International Group for the Psychology of Mathematics Education (vol. 2, pp. 345–352). Stellenbosch: University of Stellenbosch.Google Scholar
  11. Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: strategies for qualitative research. Chicago: Aldine.Google Scholar
  12. Hanna, G. (2000). Proof, explanation and exploration: an overview. Educ Stud Math, 44(1&2), 5–23.CrossRefGoogle Scholar
  13. Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A. H. Schoenfeld, J. Kaput, E. Dubinsky (Eds.), CBMS issues in mathematics education (vol. 3, pp. 234–283). Providence, RI: American Mathematical Society.Google Scholar
  14. Healy, L., & Hoyles, C. (1998). Justifying and proving in school mathematics Technical Report on the Nationwide Survey.. London: Institute of Education, University of London.Google Scholar
  15. Herbst, P. G. (1998). What works as proof in the mathematics class. Athens, GA: The University of Georgia.Google Scholar
  16. Herbst, P. G. (2002a). Engaging students in proving: a double bind on the teacher. J Res Math Educ, 33(3), 76–203.CrossRefGoogle Scholar
  17. Herbst, P. G. (2002b). Establishing a custom of proving in American school geometry: evolution of the two-column proof in the early twentieth century. Educ Stud Math, 49(3), 283–312.CrossRefGoogle Scholar
  18. Hoyles, C. (1997). The curricular shaping of students’ approaches to proof. Learn Math, 17(1), 7–16.Google Scholar
  19. Jahnke, H. N. (1978). Zum Verhältnis von Wissensentwicklung und Begründung in der Mathematik—Beweisen als didaktisches Problem. Bielefeld: Institut für Didaktik der Mathematik.Google Scholar
  20. Knipping, C. (2001).Towards a comparative analysis of proof teaching. In M. v. d. Heuvel-Panhuizen (Ed.) Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education (vol. 3, pp. 249–256). Utrecht: Utrecht University.Google Scholar
  21. Knipping, C. (2002). Proof and proving processes: teaching geometry in france and germany. In H.-G. Weigand (Ed.), Developments in mathematics education in German-speaking Countries. Selected papers from the annual conference on didactics of mathematics, Bern 1999 (pp. 44–54). Hildesheim: Franzbecker Verlag.Google Scholar
  22. Knipping, C. (2003). Beweisprozesse in der Unterrichtspraxis–Vergleichende Analysen von Mathematikunterricht in Deutschland und Frankreich. Hildesheim: Franzbecker Verlag.Google Scholar
  23. Knipping, C. (2004). Argumentations in proving discourses in mathematics classrooms. In G. Törner, et al. (Eds.), Developments in Mathematics Education in German-speaking Countries. Selected Papers from the Annual Conference on Didactics of Mathematics, Ludwigsburg, March 5–9, 2001 (pp. 73–84). Hildesheim: Franzbecker Verlag.Google Scholar
  24. Krummheuer, G., & Brandt, B. (2001). Paraphrase und Traduktion. Partizipationstheoretische Elemente einer Interaktionstheorie des Mathematiklernens in der Grundschule. Weinheim: Beltz.Google Scholar
  25. Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: interaction in classroom cultures (pp. 229–269). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  26. Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom. Two episodes and related theoretical abductions. J Math Behav, 26(1), 60–82.CrossRefGoogle Scholar
  27. Mariotti, M. A., Bartolini Bussi, M. G., Boero, P., Ferri, F., Garuti, R. (1997) Approaching geometry theorems in contexts: from history and epistemology to cognition. In E. Pehkonnen (Ed.), Proceedings of the 21st Conference of the International Group for the Psychology of Mathematics Education. Lathi, pp. 180–195Google Scholar
  28. Mariotti, M. A., & Fischbein, E. (1997). Defining in classroom activities. Educ Stud Math, 34(3), 219–248.CrossRefGoogle Scholar
  29. Moore, R. C. (1994). Making the transition to formal proof. Educ Stud Math, 27(3), 249–266.CrossRefGoogle Scholar
  30. Pedemonte, B. (2002a). Relation between argumentation and proof in mathematics: cognitive unity or break? In J. Novotná (Ed.), Proceedings of the 2nd Conference of the European Society for Research in Mathematics Education (pp. 70–80). Marienbad.Google Scholar
  31. Pedemonte, B. (2002b). Etude didactique et cognitive des rapports de l’argumentation et de la démonstration. IMAG, Grenoble: Leibniz.Google Scholar
  32. Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educ Stud Math, 66(1), 23–41.CrossRefGoogle Scholar
  33. Reid, D. (1995). Proving to explain. In L. Meira & D. Carraher (Eds.), Proceedings of the 19th Annual Conference of the International Group for the Psychology of Mathematics Education. Recife (pp. 137–144). Brasilia: Centro de Filosofia e Ciencias HumanosGoogle Scholar
  34. Reid, D., Knipping, C., & Crosby, M. (2008). Refutations and the logic of practice (to be presented at PME 2008).Google Scholar
  35. Reiss, K., Klieme, E., Heinze, A. (2001). Prerequisites for the understanding of proofs in the geometry classroom. In M. v. d. Heuvel-Panhuizen (Ed.), Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education (pp. 97–104), Utrecht: Utrecht University.Google Scholar
  36. Sekiguchi, Y. (1991). An Investigation on proofs and refutations in the mathematics classroom. Unpublished Dissertation. The University of Georgia, Athens GA: Graduate Faculty.Google Scholar
  37. Strauss, A., & Corbin, J. (1990). Basics of qualitative research Grounded theory procedures and techniques. Newbury Park, CA: Sage.Google Scholar
  38. Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press.Google Scholar
  39. Toulmin, S. E. (1990). Cosmopolis. The hidden agenda of modernity. Chicago: The University of Chicago Press.Google Scholar
  40. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.Google Scholar

Copyright information

© FIZ Karlsruhe 2008

Authors and Affiliations

  1. 1.School of EducationAcadia UniversityWolfvilleCanada

Personalised recommendations