, Volume 40, Issue 1, pp 83–96 | Cite as

Iconicity and contraction: a semiotic investigation of forms of algebraic generalizations of patterns in different contexts

  • Luis Radford
Original article


The aim of this paper is to investigate the progressive manner in which students gain fluency with cultural algebraic modes of reflection and action in pattern generalizing tasks. The first section contains a short discussion of some epistemological aspects of generalization. Drawing on this section, a definition of algebraic generalization of patterns is suggested. This definition is used in the subsequent sections to distinguish between algebraic and arithmetic generalizations and some elementary naïve forms of induction to which students often resort to solve pattern problems. The rest of the paper discusses the implementation of a teaching sequence in a Grade 7 class and focuses on the social, sign-mediated processes of objectification through which the students reached stable forms of algebraic reflection. The semiotic analysis puts into evidence two central processes of objectification—iconicity and contraction.


Algebraic thinking Contraction Generalization Iconicity Objectification Meaning Semiotics Signs 


  1. Arzarello, F. (2006). Semiosis as a multimodal process. Revista Latinoamericana de Investigación en Matemática Educativa, Special issue on semiotics, culture, and mathematical thinking (Guest Editors: Radford, L., & D’Amore, B.), 267–299.Google Scholar
  2. Bardini, C., Radford, L., & Sabena, C. (2005). Struggling with variables, arameters, and indeterminate objects or how to go insane in mathematics. In L. C. Helen, & J. L. Vincent (Eds.), Proceedings of the 29th conference of the international group for the psychology of mathematics education, University of Melbourne, Australia (Vol. 2, pp. 129–136). University of Melbourne, Australia.Google Scholar
  3. Bartolini Bussi, M. G. (1998). Verbal interaction in the mathematics classroom: a Vygotskian Analysis. In: H. Steinbring, M. B. Bussi, & A. Sierpinska (Eds.), Language and communication in the mathematics classroom (pp. 65–84). National Council of Teachers of Mathematics, Reston.Google Scholar
  4. Boersma, P., & Weenink, D. (2006). Praat (Version 4.5) [Computer software]. Amsterdam: Institute of Phonetic Sciences.Google Scholar
  5. Bolinger, D. (1983). Intonation and gesture. American Speech, 58(2), 156–174.CrossRefGoogle Scholar
  6. Castro Martínez, E. (1995). Exploración de patrones numéricos mediante configuraciones puntuales. Granada: Mathema.Google Scholar
  7. Crump, T. (1990). The anthropology of numbers. Cambridge: Cambridge University Press.Google Scholar
  8. D’Ambrosio, U. (2006). Ethnomathematics. Rotterdam: Sense Publishers.Google Scholar
  9. Fried, M. (2006). Similarity and equality in Greek mathematics: semiotics, history of mathematics and mathematics education. Paper presented at The promises and problems of a semiotic approach to mathematics, history of mathematics and mathematics education, Bielefeld, July 13–15 2006.Google Scholar
  10. Gell, A. (1992). The anthropology of time. Oxford: Berg.Google Scholar
  11. Goodwin, M. H., Goodwin, C., & Yaeger-Dror, M. (2002). Multi-modality in girls’ game disputes. Journal of Pragmatics, 34, 1621–1649.CrossRefGoogle Scholar
  12. Hegel, G. W. F. (1977). The phenomenology of spirit. (1st edn. 1807). Oxford and New York: Oxford University Press.Google Scholar
  13. Hoopes, J. (Ed.) (1991). Peirce on signs. Chapel Hill: The University of North Carolina Press.Google Scholar
  14. Høyrup, J. (2002). Lengths, widths, surfaces. A portrait of old Babylonian algebra and its kin. New York: Springer.Google Scholar
  15. Høyrup, J. (2007). The roles of Mesopotamian bronze age mathematics. Tool for state formation and administration—carrier of teachers’ professional intellectual autonomy. Educational studies in mathematics, special issue “The history of mathematics in mathematics education: theory and practice”, 66, 257–271.Google Scholar
  16. Husserl E. (1970). Logical investigations. London: Routledge and K. Paul.Google Scholar
  17. Kant, I. (1974). Logic (First Published in 1800). Indianapolis: The Bobbs-Merrill Company.Google Scholar
  18. Leont’ev, A. N. (1978). Activity, consciousness, and personality. New Jersey: Prentice-Hall.Google Scholar
  19. MacGregor, M., & Stacey, K. (1993). Seeing a pattern and writing a rule. In I. Hirabayashi, N. Nohda, K. Shigematsu, & F. Lin (Eds.), Proceedings of the 17th international conference for the psychology of mathematics education (Vol. 1, pp. 181–188). Japan: University of Tsukuba.Google Scholar
  20. Manitius, K. (1888). Des Hypsikles Schrift Anaphorikos nach Überlieferung und Inhalt kritisch behandelt. Dresden: Lehmannsche Buchdruckerei.Google Scholar
  21. Martzloff, J.-C. (1997). A history of Chinese Mathematics. Berlin: Springer.Google Scholar
  22. Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra (pp. 65–86). Dordrecht: Kluwer.Google Scholar
  23. Nørretranders, T. (1998). The user illusion. New York: Penguin Books.Google Scholar
  24. Peirce, C. S. (1931–1958). CP = Collected Papers (Vol. I–VIII). Cambridge: Harvard University Press.Google Scholar
  25. Perret-Clermont, A.-N. (2005). Thinking time. Cambridge: Hogrefe.Google Scholar
  26. Poincaré, H. (1968). La science et l’hypothèse. Paris: Flammarion.Google Scholar
  27. Polya, G. (1945). How to solve it. Princeton: Princeton University Press.Google Scholar
  28. Radford L. (2001). The historical origins of algebraic thinking. In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Eds.), Perspectives in school algebra (pp. 13–63). Dordrecht: Kluwer.Google Scholar
  29. Radford, L. (2003a). Gestures, speech and the sprouting of signs. Mathematical Thinking and Learning, 5(1), 37–70.CrossRefGoogle Scholar
  30. Radford, L., Demers, S., Guzmán, J., & Cerulli, M. (2003b). Calculators, graphs, gestures, and the production meaning. In P. N. B. Dougherty, & J. Zilliox (Eds.), Proceedings of the 27 Conference of the international group for the psychology of mathematics education (PME27-PMENA25) (Vol. 4, pp. 55–62). Hawaii: University of Hawaii.Google Scholar
  31. Radford, L. (2005). The semiotics of the schema. Kant, Piaget, and the Calculator. In: M. H. G. Hoffmann, J. Lenhard, & F. Seeger (Eds.), Activity and sign. Grounding mathematics education. (pp. 137–152). New York: Springer.Google Scholar
  32. Radford, L. (2006a). Algebraic thinking and the generalization of patterns: a semiotic perspective. In J. L. C. S. Alatorre, M. Sáiz, A. Méndez (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, North American Chapter (Vol. 1, pp. 2–21). Mexico: Mérida.Google Scholar
  33. Radford, L. (2006b). Elements of a cultural theory of objectification. Revista Latinoamericana de Investigación en Matemática Educativa, Special issue on semiotics, culture and mathematical thinking, 103–129.
  34. Radford, L. (2006c). The anthropology of meaning. Educational Studies in Mathematics, 61, 39–65.CrossRefGoogle Scholar
  35. Radford, L. (2008). Culture and cognition: towards an anthropology of mathematical thinking. In L. English (Ed.), Handbook of international research in mathematics education (2nd Edn.). Mahwah: Erlbaum (in press).Google Scholar
  36. Rivera, F. (2006). Sixth Graders’ ability to generalize patterns in algebra: issues, insights. In J. Novotná, H. Moraová, M. Krátká & N. Stehlíková (Eds.), Proceedings of the 30th conference of the international group for the psychology of mathematics education (Vol. 1, pp. 320). Prague, Czech Republic.Google Scholar
  37. Rossi Becker, J., & Rivera, F. (2006). Sixth Graders’ Figural and Numerical Strategies for Generalizing Patterns in Algebra. In S. Alatorre, J. L. Cortina, M. Sáiz, & A. Méndez (Eds.), Proceedings of the 28th annual meeting of the North American chapter of the international group for the psychology of mathematics education (Vol. 2, pp. 95–101). Mérida: Universidad Pedagógica Nacional.Google Scholar
  38. Roth, M.-W. (2007). Motive, emotion, and identity at work: a contribution to third-generation cultural historical activity theory. Mind, Culture, and Activity, 14(1/2), 40–63.Google Scholar
  39. Selting, M. (1994). Emphatic speech style - with special focus on the prosodic signalling of heightened emotive involvement in conversation. Journal of Pragmatics, 22, 375–408.CrossRefGoogle Scholar
  40. Unguru, S. (1975). On the need to rewrite the history of Greek mathematics. Archive for the History of Exact Sciences, 15, 67–114.CrossRefGoogle Scholar
  41. Ver Eecke, P. (1926). Diopante d’Alexandrie. Les six Livres arithmétiques et le Livre des nombres polygones. Liège: Desclée de Brower.Google Scholar
  42. Vergnaud, G. (1990). La théorie des champs conceptuels. Recherche en Didactique des Mathématiques, 10, 133–170.Google Scholar
  43. Vygotsky, L. S. (1986). Thought and language (edited and revised by Kozulin, A.). Cambridge: MIT Press.Google Scholar

Copyright information

© FIZ Karlsruhe 2007

Authors and Affiliations

  1. 1.École des Sciences de l’éducationLaurentian UniversitySudburyCanada

Personalised recommendations