Advertisement

ZDM

, Volume 39, Issue 5–6, pp 443–458 | Cite as

When the going gets tough, the tough gets going problem solving in Hungary, 1970–2007: research and theory, practice and politics

  • Julianna SzendreiEmail author
Original article

Abstract

In the 1970s significant research was conducted concerning the development of methods for teaching mathematics. The most outstanding of these projects, led by the late Tamás Varga, and which had a major influence on teaching mathematics in Hungary, was called OPI. This project comprised research based on experiments aiming at the complete renewal of methods and content in mathematics teaching. In 1978 a centralized and compulsory new curriculum was introduced that was based on the results of the Varga’s research. In the following decade development aimed at adopting and realizing the research results within practice. Research mainly aimed at examining the effects of the newly introduced curriculum by looking into the development of children’s problem-solving skills. Other research was associated with international studies such as SIMS, TIMMS, and PISA. Additional research and development into different aspects of problem solving, summarized here, was conducted by various research groups around the country.

Keywords

OPI project Tamás Varga Mathematics Journal Olympiads 

Notes

Acknowledgments

The author is grateful to Jane Schoenfeld for her proofreading and editing the article. I had the great opportunity to show my previous version to Alan Schoenfeld and benefit from his observations and suggestions. Furthermore I thank the help of Katalin Fried, Miklós Somogyi and Rozy Brar in English translation and bibliographic help.

References

  1. Andrews, P., Sayers, J., Depaepe, F., Carrillo, J., Szeredi, E. (2005). The mathematics education traditions of Europe (METE) project: Principles and outcomes. Symposium conducted at the 11th Biennial EARLI conference (pp. 43–47). Nicosia: University of Cyprus.Google Scholar
  2. Andrews, P., Hatch, G., Sayers, J. (2005). What do teachers of mathematics teach? An initial episodic analysis of four European traditions. In D. Hewitt, A. Noyes (Eds.), Proceedings of the Sixth British congress of mathematics education (pp. 9–16). London: University of Warwick.Google Scholar
  3. Beke, M., & Mikola, S. (1909). A középiskolai matematikai tanítás reformja (The reform of secondary mathematics education). Budapest: Franklin Társulat.Google Scholar
  4. Burkhardt, H., Groves, S., Schoenfeld, A., Stacey, K. (Eds.) (1984). Problem Solving—a World View. In Proceedings of problem solving theme group, ICME 5. Nottingham: University of Nottingham.Google Scholar
  5. Csapó, B. (Ed.). (1998). Az iskolai tudás (School knowledge). Budapest: Osiris Kiadó.Google Scholar
  6. Csíkos, C. (1999). Iskolai matematikai bizonyítások és a bizonyítási képesség. (Proofs in school and the ability of proving). Magyar Pedagógia, 99(1), 3–21.Google Scholar
  7. Csíkos, C. (2003). Matematikai szöveges feladatok megértésének problémái 10–11 éves tanulók körében. (The difficulties of comprehending mathematical word problems in students 10–11 years age). Magyar Pedagógia, 103(1), 35–55.Google Scholar
  8. Dossey, J., Csapó, B., de Jong, T., Klieme, E., Vosniadou, S. (2000). Cross-curricular competencies in PISA. Towards a framework for assessing problem-solving skills. In Contributions from the INES networks and working groups, The INES compendium (pp. 19–41). Tokyo: OECD.Google Scholar
  9. Freudenthal, H. (1973). Mathematics as an educational task (pp. 77–104). Dordrecht: D. Reidel Publishing Company.Google Scholar
  10. Freudenthal, H. (1978). Weeding and sowing: Preface to a science of mathematics education. (pp. 96–98). Dordrecht: D. Reidel Publishing Company.Google Scholar
  11. Hersh, R., & John-Steiner, V. (1993). A visit to Hungarian mathematics. The Mathematical Intelligencer, 15(2), 13–26.CrossRefGoogle Scholar
  12. Klein, S. (1987). The Effects of mdern mathematics. Budapest: Akadémiai Kiadó.Google Scholar
  13. Kosztolányi, J. (2006). On teaching problem-solving strategies. Doctoral thesis, University of Debrecen.Google Scholar
  14. Mathematics syllabus (1956). 62/1956 (M.K. 23) O.M. Tanterv az általános iskola számára (Syllabus for the general schools) Budapest: Tankönyvkiadó.Google Scholar
  15. Mullis, I. V. S., Martin, M. O., Foy, P. (2005). Mathematics achievement in the cognitive domains at the fourth and eighth grades (chapter 2). In IEA’s TIMSS 2003 international report on achievement in the mathematics cognitive domain (p. 23). Chestnut Hill: TIMSS & PIRLS International Study Centre, Boston College.Google Scholar
  16. NAT. (2003). Hungarian National Core Curriculum. Retrieved April 23, 2007 from http://www.okm.gov.hu/main.php?folderID = 137&articleID=6994&ctag=articlelist&iid=1.
  17. OECD. (2000). Measuring student knowledge and skills. The PISA 2000 assessment on reading, mathematical and scientific literacy. Paris: OECD.Google Scholar
  18. OECD. (2003). The PISA 2003 assessment framework. Mathematics, reading, science and problem solving knowledge and skills. Paris: OECD.Google Scholar
  19. Pertl, G. (2000). Quality in education.. In Paper presented at the Arion—conference on quality assurance, Pilisborosjenő. Hungary, March 19–25, 2000. Retrieved April 23, 2007 http://www.oki.hu/printerFriendly.php?tipus=cikk&kod=english-art-pertl-arion.html.
  20. Pólya, G. (1945). How to solve it. Princeton: Princeton University Press.Google Scholar
  21. Pólya, G. (1954). Mathematics and plausible reasoning (vols 1–2). Princeton: Princeton University Press.Google Scholar
  22. Pólya, G. (1957). How to solve it (2nd edn.). Princeton: Princeton University Press.Google Scholar
  23. Pólya, G. (1981). Mathematical discovery (vols 1–2). New York: Wiley.Google Scholar
  24. Radnai, G., & Kunfalvi, R. (1988). Physics in Budapest. A surve. Amsterdam: North-Holland Physics Publishing.Google Scholar
  25. Radnai-Szendrei, J. (1983). A matematika-vizsgálat (The mathematics study). Pedagógiai Szemle, 32(2), 151–157.Google Scholar
  26. Radnai-Szendrei, J. (1977). Tentative d’evaluation de certains effects d’un nouveau programme de mathematique. (An attempt at the evaluation of some effects of a new mathematics program.) In Proceedings of the evaluation in the teaching of mathematics, CIEAEM 29 (pp. 95–105). Lausanne.Google Scholar
  27. Schoenfeld, A. H. (1980). Teaching problem-solving skills. American Mathematical Monthly, 87, 794–805.CrossRefGoogle Scholar
  28. Schoenfeld, A. H. (Ed) (1983). Problem solving in the mathematics curriculum: A report, recommendations, and an annotated bibliography. Washington, DC: Mathematical Association of America.Google Scholar
  29. Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando: Academic.Google Scholar
  30. Schoenfeld, A. H. (Ed). (1994). Mathematical thinking and problem solving. Hillsdale: Erlbaum.Google Scholar
  31. Szendrei, J. (1991). Matematikatanításunk nemzetközi mérlegen (Mathematics education on an international scale). Doctoral thesis, Budapest, ELTE.Google Scholar
  32. Szendrei, J. (1996). Concrete materials in the classroom. In A. Bishop, K. Clements, C. Keitel, J. Kilpatrick, C. Laborde (Eds.), International handbook of mathematics education (pp. 411–434). Dordrecht: Kluwer.Google Scholar
  33. Szendrei, J. (2005). Gondolod, hogy egyre megy? (Do You Think it’s the Same?) In Dialogues on mathematics education. Budapest: Typotex Kiadó.Google Scholar
  34. Szendrei, J., & Szitányi, J. (2007). Intereses y sentimientos: ¿qué dificultades tiene el desarrollo de la mentalización hacia las probabilidades en la escuela primaria? (Interests and feelings: what difficulties does the development of the mentalization have regarding the study of probability in the primary school?) Uno: Revista de didáctica de las matematicas, vol 44 (pp. 31–47).Google Scholar
  35. Török, J. (2007). The mathematics education traditions of Europe (METE) project. teaching mathematics and computer science. Debrecen: University of Debrecen.Google Scholar
  36. Varga, T. (1965). The use of a composite method for the mathematical education of young children. Bulletin of International Study Group for Mathematical Learning. 3(2), 1–9.Google Scholar
  37. Varga, T. (1968). Higher mathematics in lower grades. In Feldman (Ed.), Prepubescent mathematical learning (C18-C22). San José: San José State College Mathematics Department.Google Scholar
  38. Vári, P. (Ed). (1997a). Are we similar in math and science? A study of grade 8 in nine central and eastern European countries, IEA. Budapest: IEA-OKI.Google Scholar
  39. Vári, P. (Ed.b) (1997b). Monitor ‘95. National assessment of student achievement. Budapest: National Institute of Public Education.Google Scholar
  40. Vári, P. (Ed.) (2003). PISA 2000 Survey (PISA-vizsgálat 2000). Budapest: Műszaki Könyvkiadó.Google Scholar
  41. Verschaffel, L., de Corte, E., Lasure, S. (1994). Realistic considerations in mathematical modelling of school arithmetic word problems. Learning and Instruction, 4, 273–294.CrossRefGoogle Scholar
  42. Vidákovich, T., & Csapó, B. (1998). A szövegesfeladat-megoldó készségek fejlődése (The development of ability to solve text problems). In V. Lajos (Ed.). Közoktatás-kutatás 1996–1997 (pp. 247–273). Budapest: Művelődési és Közoktatási Minisztérium.Google Scholar
  43. Zsinkó, E. (2006). Analysis of the affective factors of learning mathematics among teacher trainees. Teaching Mathematics and Computer Science, 4(2), 225–254.Google Scholar

Copyright information

© FIZ Karlsruhe 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity Eötvös Loránd, TÓFKBudapestHungary

Personalised recommendations