Advertisement

ZDM

, Volume 37, Issue 3, pp 130–139 | Cite as

Structural stability and dynamic geometry: Some ideas on situated proofs

  • Luis Moreno-Armella
  • Bharath Sriraman
Analyses

Abstract

In this paper we survey the historical and contemporary connections in mathematics between classical “conceptual” tools versus modern computing tools. In this process we highlight the interplay between the inductive and deductive, experimental and theoretical, and propose the notion of Situated proofs as a didactic tool for the teaching of geometry in the 21st century.

ZDM-Classification

E50 G10 R20 

Kurzreferat

Dieser Artikel konfrontiert vor einem historischem und aktuellen Hintergrund überblicksartig die Spannung zwischen «klassischen» und modernen Computerwerkzengen. In diesem Zusammenhang wird das Zusammenspiel zwischen Induktion und Dekuktion, zwischen Experimentellem und Theorie herausgearbeitet, und für ein Konzept des kontextuellen Beweisens als didaktisches Werkzeug der Gemmetrielehre im 21. Jahrhundert plädiert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, V.I. (2000) Mathematics: Frontiers and Perspectives. American Mathematical Society.Google Scholar
  2. Balacheff, N., Kaput, J. (1996). Computer-based learning environment in mathematics. In A. J. Bishop et al. (Eds.), International handbook of mathematical education (pp. 469–501). Kluwer Academic Publishers, Dordrecht.Google Scholar
  3. Bailey, D. & Borwein, P. (2001), Mathematics Unlimited 2001 and Beyond. B. Engquist and W. Schmid (eds), Springer-Verlag.Google Scholar
  4. Berger, M. (1998). Graphic calculators: An interpretative framekork. For the Learning of Mathematics, 18(2), 13–20.Google Scholar
  5. Bottazzini, U. (1986) The Higher Calculus: A History of Real and Complex analysis from Euler to Weierstrass. New York: Springer Verlag.Google Scholar
  6. Courant, R. & Robbins, H. (2001). Was ist mathematik? Springer-Verlag.Google Scholar
  7. Donald, M. (2001). A Mind so rare. Norton, New York.Google Scholar
  8. Flegg, G. (1983). Numbers: Their history and meaning, Penguin.Google Scholar
  9. Goldstein, C. (1999). La naissance du Nombre en Mesopotamie. La Recherche, L'Univers des Nombres (hors de serie).Google Scholar
  10. Guin, D. & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: the case of calculators. International Journal of Computers for Mathematical Learning, 3, 195–227.CrossRefGoogle Scholar
  11. Hilbert, D. & Cohn-Vossen, S (1999). Geometry and the Imagination. New York: Chelsea.Google Scholar
  12. Lakatos, I. (1976) Proofs and Refutations. Cambridge Univeristy Press.Google Scholar
  13. Manin, Y. I. (1977). A course in mathematical logic, Springer-Verlag, New York.Google Scholar
  14. Moreno, L.A. & Block, D. (2002). Democratic Access to Powerful Mathematics in a Developing Country. In L.D. English (ed.) Handbook of International Research in Mathematics Education, (pp. 301–321) Lawrence Erlbaum & Associates.Google Scholar
  15. Noss, R. & Hoyles, C. (1996). Windows on mathematical Meanings. Learning Cultures and Computers. Dordrecht: Kluwer Academic Publishers.Google Scholar
  16. Pimm, D. (1995). Symbols and meanings in school mathematics. London: Routledge.Google Scholar
  17. Peitgen, Jürgen y Saupe (1992): Fractals for the Classroom vol. 1, New York: Springer-Verlag.Google Scholar
  18. Rabardel, P. (1995). Les hommes et les technologies. Approche cognitive des instruments contemporains. Paris: Armand Colin.Google Scholar
  19. Schmandt-Besserat, D. (1978). The Earliest Precursor of Writing. Scientific American (pp. 39–47).Google Scholar
  20. Swicegood, G. (2004). The Morley trisector theorem. The Montana Mathematics Enthusiast, 1(2), 38–43.Google Scholar
  21. Varberg, D.E. (1985) Pick's Theorem Revisited, The American Mathematical Monthly 92(1985), pp 584–587.CrossRefGoogle Scholar
  22. von Glasersfeld, E. (1983) Learning as a constructive activity. In J. C. Bergeron and N. Herscovics (Eds.), Proceedings of the Firth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 41–69). Montreal: University of Montreal.Google Scholar
  23. Weyl, H. (1918). Raum-Zeit-Materie. Vorlesungen über allgemeine Relativitätstheorie, Berlin: Springer Verlag.Google Scholar
  24. Wittgenstein, L. (1978). Some Remarks on the Foundations of Mathematics. Cambridge, Massachusetts Institute of Technology Press.Google Scholar

Copyright information

© ZDM 2005

Authors and Affiliations

  • Luis Moreno-Armella
    • 1
  • Bharath Sriraman
    • 2
  1. 1.Matematica EducativaCINVESTAV-IPNMexico CityMexico
  2. 2.Dept. of Mathematical SciencesThe University of MontanaMissoulaUSA

Personalised recommendations