Blätter der DGVFM

, Volume 28, Issue 1, pp 29–45 | Cite as

Duration dependence models for claim counts

Original Research Paper

Abstract

The aim of the paper is to introduce new claim count distributions constructed from different waiting time assumptions, such as the Exponential, Gamma and Weibull distributions. These models are then fitted to panel data with Gamma distributed random effects. The random effects allow for serial dependence and take residual heterogeneity into account. Predictive distributions are obtained with the help of Markov Chain Monte Carlo simulations. The approach is illustrated on the basis of a Belgian motor third party liability insurance portfolio observed for three years.

Zusammenfassung

Der Artikel stellt neue Schadenzahlverteilungen vor, die aus verschiedenen Annahmen zur Wartezeitverteilung hergeleitet werden. Diese Modelle werden an Paneldaten mit gammaverteilten Zufallseffekten angepasst. Die zufälligen Effekte berücksichtigen serielle Abhängigkeit sowie Heterogenität der Differenzen. Durch Markov Chain Monte Carlo Simulationen werden Prognoseverteilungen gewonnen. Die Vorgehensweise wird anhand eines belgischen Kfz-Haftpflicht Bestandes, der über 3 Jahre beobachtet wird, illustriert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramowitz M,Stegun IA (1968) Handbook of Mathematical Functions, National Bureau of Standards. Applied Mathematics Series 55. Dover, New YorkGoogle Scholar
  2. 2.
    Bates G, Neyman J (1951) Contributions to the theory of accident proneness. II: True or false contagion, University of California Publications in Statistics 215–253Google Scholar
  3. 3.
    Boyer M, Dionne G, Vanasse C (1992) Econometric Models of Accident Distribution. In: Dionne G (ed) Contributions to Insurance Economics. Kluwer Academic Press, BostonGoogle Scholar
  4. 4.
    Bradlow ET, Fader PS, Adrian MT, McShane B (2006) Count models based on Weibull interarrival times, Working PaperGoogle Scholar
  5. 5.
    Burnham KP, Anderson DR (2002) Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach. Springer, New YorkGoogle Scholar
  6. 6.
    Cameron AC, Trivedi PK (1998) Regression Analysis of Count Data. Cambridge University Press, New YorkMATHGoogle Scholar
  7. 7.
    Feller W (1943) On a general class of ‘contagious’ distributions. Annals of Mathematical Statistics 14:389–400MathSciNetGoogle Scholar
  8. 8.
    Golden RM (2003) Discrepancy risk model selection test theory for comparing possibly misspecified or nonnested models. Psychometrika 68:229–249CrossRefMathSciNetGoogle Scholar
  9. 9.
    Keiding N, Andersen C, Fledelius P (1995) The Cox regression model for claims data in non-life insurance. Astin Bulletin 28:95–118CrossRefGoogle Scholar
  10. 10.
    Lawless JF (1987) Regression methods for Poisson process data. Journal of the American Statistical Association 82:808–815MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lemaire J (1995) Bonus-Malus Systems in Automobile Insurance. Kluwer Academics, BostonGoogle Scholar
  12. 12.
    Marshall AW, Olkin I (1990) Multivariate distributions generated from mixtures of convolution and product families. In: Block HW, Sampson AR, Savits TH (eds.) Topics in Statistical Dependence, Lecture Notes-Monograph Series, Vol. 16:371–393 Hayward, CA.Google Scholar
  13. 13.
    Nelson KP, Lipsitz SR, Fitzmaurice GM, Ibrahim J, Parzen M, Strawderman R (2006) Use of the probability integral transformation to fit nonlinear mixed-effects models with nonnormal random effects. Journal of Computational and Graphical Statistics 15:39–57CrossRefMathSciNetGoogle Scholar
  14. 14.
    Pinquet J (2000) Experience rating through heterogeneous models. In: Dionne G (ed.) Handbook of Insurance:459–500 Kluwer Academic, BostonGoogle Scholar
  15. 15.
    Rivers D, Vuong Q (2002) Model selection tests for nonlinear dynamic models. Econometrics Journal 5:1–39MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Scollnik DPM (2001) Actuarial modeling with MCMC and BUGS. North American Actuarial Journal 5:96–125MATHMathSciNetGoogle Scholar
  17. 17.
    Smith AFM, Roberts GO (1993) Bayesian computation via the Gibbs sampler and related Markov Chain Monte Carlo methods (with discussion). Journal of the Royal Statistical Society, Series B 55:3–23MATHMathSciNetGoogle Scholar
  18. 18.
    Vuong QH (1989) Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57:307–333MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Winkelmann R (2003) Econometric of Count Data, 4th edn. Springer-Verlag, BerlinMATHGoogle Scholar
  20. 20.
    Winkelmann R (1995): Duration dependence and dispersion in count data models. Journal of Business and Economic Statistics 13:467–474CrossRefMathSciNetGoogle Scholar
  21. 21.
    Winkelmann R, Zimmermann KF (1991) A new approach for modeling economic count data. Economics Letters 37:139–143MATHCrossRefGoogle Scholar
  22. 22.
    Winkelmann R, Zimmermann KF (1995) Recent development in count data modelling: Theory and application. Journal of Economic Surveys 9:1–24CrossRefGoogle Scholar

Copyright information

© DAV / DGVFM 2007

Authors and Affiliations

  1. 1.Louvain-la-NeuveBelgium

Personalised recommendations