Skip to main content
Log in

Counting non-uniform lattices

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In [BGLM] and [GLNP] it was conjectured that if H is a simple Lie group of real rank at least 2, then the number of conjugacy classes of (arithmetic) lattices in H of covolume at most x is x(γ(H)+o(1)) log x/ log log x where γ(H) is an explicit constant computable from the (absolute) root system of H. In [BLu] we disproved this conjecture. In this paper we prove that for most groups H the conjecture is actually true if we restrict to counting only non-uniform lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Belolipetsky, Counting maximal arithmetic subgroups, Duke Mathematical Journal 140 (2007), 1–33.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Belolipetsky, T. Gelander, A. Lubotzky and A. Shalev, Counting arithmetic lattices and surfaces, Annals of Mathematics 172 (2010), 2197–2221.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Belolipetsky and B. Linowitz, Counting isospectral manifolds, Advances in Mathematics 321 (2017), 69–79.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Belolipetsky and A. Lubotzky, Manifolds counting and class field towers, Advances in Mathematics 229 (2012), 3123–3146.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Borel, Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963), 111–122.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV 8 (1981), 1–33.

    MathSciNet  MATH  Google Scholar 

  7. A. Borel and G. Harder, Existence of discrete cocompact subgroups of reductive groups over local fields, Journal für die Reine und Angewandte Mathematik 298 (1978), 53–64.

    MathSciNet  MATH  Google Scholar 

  8. A. Borel and G. Prasad, Finiteness theorems for discrete subgroups of bounded co-volume in semi-simple groups, Institut des Hautes Etudes Scientifiques. Publications Mathématiques 69 (1989) 119–171. Addendum, ibid. 71 (1990). 173–177.

    Article  MATH  Google Scholar 

  9. Z. I. Borevich and I. P. Shafarevich, Number Theory, Pure and Applied Mathematics, Vol. 20. Academic Press, New York-London, 1966.

  10. A. Brumer and J. Silverman, The number of elliptic curves overwith conductor N, Manuscripta Mathematica 91 (1996), 95–102.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Burger, T. Gelander, A. Lubotzky and S. Mozes, Counting hyperbolic manifolds, Geometric and Functional Analysis 12 (2002), 1161–1173.

    Article  MathSciNet  MATH  Google Scholar 

  12. V. I. Chernousov and A. A. Ryzhkov, On the classification of maximal arithmetic subgroups of simply connected groups, Matematicheskiĭ Sbornik 188 (1997), 127–156; English translation: Sbornik. Mathematics 188 (1997), 1385–1413.

    MathSciNet  MATH  Google Scholar 

  13. H. Cohen and H. W. Lenstra, Jr., Heuristics on class groups of number fields, in Number Theory, Noordwijkerhout 1983, Lecture Notes in Mathematics, Vol. 1068, Springer, Berlin, 1984, pp. 33–62.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Cornell, Relative genus theory and the class group of l-extensions, Transactions of the American Mathematical Society 277 (1983), 421–429.

    MathSciNet  MATH  Google Scholar 

  15. J. Ellenberg and A. Venkatesh, Reflection principles and bounds for class group torsion, International Mathematics Research Notices 2007 (2007), Art. ID rnm002.

  16. M. Fried and M. Jarden, Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 11, Springer-Verlag, Berlin, 2005.

  17. T. Gelander, Homotopy type and volume of locally symmetric manifolds, Duke Mathematical Journal 124 (2004), 459–515.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Gelander, Non-compact arithmetic manifolds have simple homotopy type, preprint, arXiv:math/0111261v1 [math.DG].

  19. D. Goldfeld, A. Lubotzky, N. Nikolov and L. Pyber, Counting primes, groups and manifolds, Proceedings of the of National Academy of Sciences of the United States of America 101 (2004), 13428–13430.

    MathSciNet  MATH  Google Scholar 

  20. D. Goldfeld, A. Lubotzky and L. Pyber, Counting congruence subgroups, Acta Mathematica 193 (2004), 73–104.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Harder, A Gauss-Bonnet formula for discrete arithmetically defined groups, Annales Scientifiques de l’École Normale Supérieure 4 (1971), 409–455.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Lubotzky, Subgroup growth and congruence subgroups, Inventiones Mathematicae 119 (1995), 267–295.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Lubotzky and N. Nikolov, Subgroup growth of lattices in semisimple Lie groups, Acta Mathematica 193 (2004), 105–139.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Lubotzky and D. Segal, Subgroup Growth, Progress in Mathematics, Vol. 212, Birkhäuser, Basel, 2003.

  25. G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 17, Springer, Berlin, 1991.

  26. D. Witte Morris, Real representations of semisimple Lie algebras have-forms, in Algebraic Groups and Arithmetic, Tata Institute of Fundamental Research, Mumbai, 2004, pp. 469–490.

  27. D. Witte Morris, Introduction to Arithmetic Groups, Deductive Press, 2015.

  28. T. Ono, On algebraic groups and discontinuous groups, Nagoya Mathematical Journal 27 (1966), 279–322.

    Article  MathSciNet  MATH  Google Scholar 

  29. V. P. Platonov and A. S. Rapinchuk, Algebraic Groups and Number Theory, Pure and Applied Mathematics, Vol. 139, Academic Press, Boston, MA, 1994.

  30. G. Prasad, Volumes of S-arithmetic quotients of semi-simple groups, Institut des Hautes Études Scientifiques. Publications Mathématiques 69 (1989), 91–117.

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Prasad and A. S. Rapinchuk, Computation of the metaplectic kernel, Institut des Hautes Etudes Scienatifiques. Publications Mathématiques 84 (1996), 91–187.

    Article  MathSciNet  MATH  Google Scholar 

  32. G. Prasad and A. S. Rapinchuk, On the existence of isotropic forms of semi-simple algebraic groups over number fields with prescribed local behavior, Advances in Mathematics 207 (2006), 646–660.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. S. Raghunathan, Discrete Subgroups of Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 68, Springer, New York-Heidelberg, 1972.

  34. J. Rohlfs, Die maximalen arithmetisch definierten Untergruppen zerfallender einfacher Gruppen, Mathematische Annalen 244 (1979), 219–231.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Rosenberg and D. Zelinsky, Automorphisms of separable algebras, Pacific Journal of Mathematics 11 (1961), 1109–1117.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Salehi Golsefidy, Counting lattices in simple Lie groups: the positive characteristic case, Duke Mathematical Journal 161 (2012), 431–481.

    Article  MathSciNet  MATH  Google Scholar 

  37. J.-P. Serre, Le problème des groupes de congruence pour SL2, Annals of Mathematics 92 (1970), 489–527.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Tits, Reductive groups over local fields, in Automorphic Forms, Representations and L-functions. Part I Proceedings of Symposia in Pure Mathematics, Vol. 33, American Mathematical Society, Providence, RI, 1979, pp. 29–69.

    Article  Google Scholar 

  39. H. C. Wang, Topics on totally discontinuous groups, in Symmetric Spaces, Pure and Applied Mathematics, Vol. 8, Marcel Dekker, New York, 1972, pp. 459–487.

    Google Scholar 

  40. A. Weil, Sur les “formules explicites” de la théorie des nombres premiers, Meddelanden Lunds Universitetes Matematiska Seminarium, tome supplementaire dédié à Marcel Riesz (1952), 252–265.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Lubotzky.

Additional information

Dedicated to Aner Shalev on his 60th birthday

Belolipetsky is partially supported by the CNPq, the FAPERJ and the MATH-AmSud Program “18-Math-08”.

Luboztky was suppoted by the NSF, the ISF and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 692854).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belolipetsky, M., Lubotzky, A. Counting non-uniform lattices. Isr. J. Math. 232, 201–229 (2019). https://doi.org/10.1007/s11856-019-1868-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-019-1868-4

Navigation