Israel Journal of Mathematics

, Volume 230, Issue 2, pp 919–947 | Cite as

Bounding the free spectrum of nilpotent algebras of prime power order

  • Erhard AichingerEmail author


Let A be a finite nilpotent algebra in a congruence modular variety with finitely many fundamental operations. If A is of prime power order, then it is known that there is a polynomial p such that for every n ∈ ℕ, every n-generated algebra in the variety generated by A has at most 2p(n) elements. We present a bound on the degree of this polynomial.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AE06]
    E. Aichinger and J. Ecker, Every (k + 1)-affine complete nilpotent group of class k is affine complete, International Journal of Algebra and Computation 16 (2006), 259–274.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Aic06]
    E. Aichinger, The polynomial functions of certain algebras that are simple modulo their center, in Contributions to General Algebra, Vol. 17, Heyn, Klagenfurt, 2006, pp. 9–24.MathSciNetzbMATHGoogle Scholar
  3. [Aic14]
    E. Aichinger, On the direct decomposition of nilpotent expanded groups, Communications in Algebra 42 (2014), 2651–2662.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [AM07]
    E. Aichinger and P. Mayr, Polynomial clones on groups of order pq, Acta Mathematica Hungarica 114 (2007), 267–285.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [AM10]
    E. Aichinger and N. Mudrinski, Some applications of higher commutators in Mal’cev algebras, Algebra Universalis 63 (2010), 367–403.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [AM13]
    E. Aichinger and N. Mudrinski, On various concepts of nilpotence for expansions of groups, Publicationes Mathematicae Debrecen 83 (2013), 583–604.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [AMO18]
    E. Aichinger, N. Mudrinski and J. Opršal, Complexity of term representations of finitary functions, International Journal of Algebra and Computation 28 (2018), 1101–1118.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [BB87]
    J. Berman and W. J. Blok, Free spectra of nilpotent varieties, Algebra Universalis 24 (1987), 279–282.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [BS81]
    S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics, Vol. 78, Springer, New York–Berlin, 1981.Google Scholar
  10. [Bul01]
    A. Bulatov, On the number of finite Mal’tsev algebras, Contributions to General Algebra, Vol. 13 (Velké Karlovice, 1999/Dresden, 2000), Heyn, Klagenfurt, 2001, pp. 41–54.zbMATHGoogle Scholar
  11. [CF09]
    M. Couceiro and S. Foldes, Function classes and relational constraints stable under compositions with clones, Discussiones Mathematicae. General Algebra and Applications 29 (2009), 109–121.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [FM87]
    R. Freese and R. N. McKenzie, Commutator Theory for Congruence Modular Varieties, London Mathematical Society Lecture Note Series, Vol. 125, Cambridge University Press, Cambridge, 1987.Google Scholar
  13. [Fre83]
    R. Freese, Subdirectly irreducible algebras in modular varieties, in Universal Algebra and Lattice Theory (Puebla, 1982), Lecture Notes in Mathematics, Vol. 1004, Springer, Berlin, 1983, pp. 142–152.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [Gum83]
    H. P. Gumm, Geometrical methods in congruence modular algebras, Memoirs of the American Mathematical Society 286 (1983).Google Scholar
  15. [Her79]
    C. Herrmann, Affine algebras in congruence modular varieties, Acta Universitatis Szegediensis. Acta Scientiarum Mathematicarum 41 (1979), 119–125.MathSciNetzbMATHGoogle Scholar
  16. [Hig67]
    G. Higman, The orders of relatively free groups, in Proceedings of the International Conference on the Theory of Groups (Canberra, 1965), Gordon and Breach, New York, 1967, pp. 153–165.Google Scholar
  17. [HM88]
    D. Hobby and R. McKenzie, The Structure of Finite Algebras, Contemporary Mathematics, Vol. 76, American Mathematical Society, Providence, RI, 1988.Google Scholar
  18. [Kea99]
    K. A. Kearnes, Congruence modular varieties with small free spectra, Algebra Universalis 42 (1999), 165–181.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Kis92]
    E. W. Kiss, Three remarks on the modular commutator, Algebra Universalis 29 (1992), 455–476.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [Kre18]
    S. Kreinecker, Closed function sets on groups of prime order, Scholar
  21. [MMT87]
    R. N. McKenzie, G. F. McNulty and W. F. Taylor, Algebras, Lattices, Varieties. Volume I, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, California, 1987.Google Scholar
  22. [Moo18]
    A. Moorhead, Higher commutator theory for congruence modular varieties, Journal of Algebra 513 (2018), 133–158.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [Smi76]
    J. D. H. Smith, Mal’cev Varieties, Lecture Notes in Mathematics, Vol. 554, Springer, Berlin, 1976.Google Scholar
  24. [VL83]
    M. R. Vaughan-Lee, Nilpotence in permutable varieties, in tUniversal Algebra and Lattice Theory (Puebla, 1982), iLecture Notes in Mathematics, Vol. 1004, Springer, Berlin, 1983, pp. 293–308.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [Wir19]
    A. Wires, On Supernilpotent Algebras, Algebra Universalis 80 (2019), Art. 1.Google Scholar

Copyright information

© The Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.Institut für AlgebraJohannes Kepler Universität LinzLinzAustria

Personalised recommendations