Advertisement

Relatively hyperbolic groups with fixed peripherals

  • Matthew Cordes
  • David HumeEmail author
Article
  • 1 Downloads

Abstract

We build quasi-isometry invariants of relatively hyperbolic groups which detect the hyperbolic parts of the group; these are variations of the stable dimension constructions previously introduced by the authors.

We prove that, given any finite collection of finitely generated groups H each of which either has finite stable dimension or is non-relatively hyperbolic, there exist infinitely many quasi-isometry types of one-ended groups which are hyperbolic relative to H.

The groups are constructed using classical small cancellation theory over free products.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ali05]
    E. Alibegović, A combination theorem for relatively hyperbolic groups, Bulletin of the London Mathematical Society 37 (2005), 459–466.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [BDM09]
    J. Behrstock, C. Druţu and L. Mosher, Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity, Mathematische Annalen 344 (2009), 543–595.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [BD08]
    G. C. Bell and A. N. Dranishnikov, Asymptotic dimension, Topology and its Applications 155 (2008), 1265–1296.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [BDK04]
    G. C. Bell, A. N. Dranishnikov and J. E. Keesling, On a formula for the asymptotic dimension of free products, Fundamenta Mathematicae 183 (2004), 39–45.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [BF08]
    G. C. Bell and K. Fujiwara, The asymptotic dimension of a curve graph is finite, Journal of the London Mathematical Society 77 (2008), 33–50.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [BBF15]
    M. Bestvina, K. Bromberg and K. Fujiwara, Constructing group actions on quasitrees and applications to mapping class groups, Publications Mathématiques. Institut de Hautes Études Scientifiques 122 (2015), 1–64.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [BH78]
    A. Borel and G. Harder, Existence of discrete cocompact subgroups of reductive groups over local fields, Journal für die Reine und Angewandte Mathematik 298 (1978), 53–64.MathSciNetzbMATHGoogle Scholar
  8. [Bow12]
    B. H. Bowditch, Relatively hyperbolic groups, International Journal of Algebra and Computation 22 (2012), 1250016.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Cha95]
    C. Champetier, Propriétés statistiques des groupes de présentation finie, Advances in Mathematics 116 (1995), 197–262.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [CH17]
    M. Cordes and D. Hume, Stability and the Morse boundary, Journal of the London Mathematical Society 95 (2017), 963–988.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [Dah03]
    F. Dahmani, Combination of convergence groups, Geometry and Topology 7 (2003), 933–963.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [DGP11]
    F. Dahmani, V. Guirardel and P. Przytycki, Random groups do not split, Mathematische Annalen 349 (2011), 657–673.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [DS05]
    C. Druţu and M. Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005), 959–1058.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [Dru09]
    C. Druţu, Relatively hyperbolic groups: geometry and quasi-isometric invariance, Commentarii Mathematici Helvetici 84 (2009), 503–546.MathSciNetzbMATHGoogle Scholar
  15. [Dun85]
    M. J. Dunwoody, The accessibility of finitely presented groups, Inventiones Mathematicae 81 (1985), 449–458.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [DT15]
    M. G. Durham and S. J. Taylor, Convex cocompactness and stability in mapping class groups, Algebraic & Geometric Topology 15 (2015), 2839–2859.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [Far98]
    B. Farb, Relatively hyperbolic groups, Geometric and Functional Analysis 8 (1998), 810–840.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Gro13]
    B. W. Groff, Quasi-isometries, boundaries and JSJ-decompositions of relatively hyperbolic groups, Journal of Topology and Analysis 5 (2013), 451–475.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Gro87]
    M. Gromov, Hyperbolic groups, in Essays in Group Theory, Mathematical Sciences Research Institute Publications, Vol. 8, Springer, New York, 1987, pp. 75–263.Google Scholar
  20. [Gru]
    D. Gruber, Personal communication.Google Scholar
  21. [Hum17]
    D. Hume, Embedding mapping class groups into a finite product of trees, Groups, Geometry, and Dynamics 11 (2017), 613–647.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [KM10]
    O. Kharlampovich and A. G. Myasnikov, Equations and fully residually free groups, in Combinatorial and Geometric Group Theory, Trens in Mathematics, Birkhäuser/Springer, Basel, 2010, pp. 203–242.Google Scholar
  23. [LS10]
    R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Classics in Mathematics, Springer-Verlag, Berlin, 2001.CrossRefzbMATHGoogle Scholar
  24. [Mac12]
    J. M. Mackay, Conformal dimension and random groups, Geometric and Functional Analysis 22 (2012), 213–239.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [MS13]
    J. M. Mackay and A. Sisto, Embedding relatively hyperbolic groups in products of trees, Algebraic & Geometric Topology 13 (2013), 2261–2282.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [Osi05]
    D. V. Osin, Asymptotic dimension of relatively hyperbolic groups, International Mathematics Research Notices 35 (2005), 2143–2161.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [Osi06]
    D. V. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Memoirs of the American Mathematical Society 179 (2006).Google Scholar
  28. [PW02]
    P. Papasoglu and K. Whyte, Quasi-isometries between groups with infinitely many ends, Commentarii Mathematici Helvetici 77 (2002), 133–144.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [Roe05]
    J. Roe, Hyperbolic groups have finite asymptotic dimension, Proceedings of the American Mathematical Society 133 (2005), 2489–2490.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [Sch95]
    R. Schwartz, The quasi-isometry classification of rank one lattices, Publications Mathématiques. Institut des Hautes Etudes Scientifiques 82 (1995), 133–168.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [Sel01]
    Z. Sela, Diophantine geometry over groups. I. Makanin–Razborov diagrams, Publications Mathématiques. Institut des Hautes Études Scientifiques 93 (2001), 31–105.MathSciNetCrossRefzbMATHGoogle Scholar
  32. [Sil03]
    L. Silberman, Addendum to: “Random walk in random groups” [Geom. Funct. Anal. 13 (2003), no. 1, 73–146; MR1978492] by M. Gromov, Geometric and Functional Analysis 13 (2003), 147–177.MathSciNetCrossRefGoogle Scholar
  33. [Sis13]
    A. Sisto, Projections and relative hyperbolicity, L’Enseignement Mathématique 59 (2013), 165–181.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [Sta68]
    J. Stallings, Groups of dimension 1 are locally free, Bulletin of the American Mathematical Society 74 (1968), 361–364.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [Sta71]
    J. Stallings, Group Theory and Three-Dimensional Manifolds, Yale Mathematical Monographs, Vol. 4, Yale University Press, New Haven, CT, 1971.Google Scholar
  36. [Str90]
    R. Strebel, Appendix. Small cancellation groups, in Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988), Progress in Mathematics, Vol. 83, Birkhäuser Boston, Boston, MA, 1990, pp. 227–273.MathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2019

Authors and Affiliations

  1. 1.Department of MathematicsETH ZurichZurichSwitzerland
  2. 2.Matheamtical InstituteUniversity of OxfordOxfordUK

Personalised recommendations