Advertisement

Finitely additive measures and complementability of Lipschitz-free spaces

  • Marek Cúth
  • Ondřej F. K. KalendaEmail author
  • Petr Kaplický
Article
  • 26 Downloads

Abstract

We prove in particular that the Lipschitz-free space over a finite-dimensional normed space is complemented in its bidual. For Euclidean spaces the norm of the respective projection is 1. As a tool to obtain the main result we establish several facts on the structure of finitely additive measures on finite-dimensional spaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Bouchitté, T. Champion and C. Jimenez, Completion of the space of measures in the Kantorovich norm, Rivisita de Matematica della Università di Parma 4* (2005), 127–139.Google Scholar
  2. [2]
    M. Cúth and M. Doucha, Lipschitz-free spaces over ultrametric spaces, Mediterranean Journal of Mathematics 13 (2016), 1893–1906.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    M. Cúth, M. Doucha and P. A. Wojtaszczyk, On the structure of Lipschitz-free spaces, Proceedings of the American Mathematical Society 144 (2016), 3833–3846.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M. Cúth, O. R. F. K. Kalenda and P. Kaplický, Isometric representation of Lipschitzfree spaces over convex domains in finite-dimensional spaces, Mathematika 63 (2017), 538–552.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Dalet, Free spaces over countable compact metric spaces, Proceedings of the American Mathematical Society 143 (2015), 3537–3546.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Dalet, Free spaces over some proper metric spaces, Mediterranean Journal of Mathematics 12 (2015), 973–986.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J. Diestel and J. J. Uhl, Jr., Vector Measures, Mathematical Surveys, Vol. 15, American Mathematical Society, Providence, RI, 1977.Google Scholar
  8. [8]
    N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience, New York–London, 1958.zbMATHGoogle Scholar
  9. [9]
    G. P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Vol. I. Linearized Steady Problems, Springer Tracts in Natural Philosophy, Vol. 38, Springer-Verlag, New York, 1994.Google Scholar
  10. [10]
    G. Godefroy and N. J. Kalton, Lipschitz-free Banach spaces, Studia Mathematica 159 (2003), 121–141.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    G. Godefroy, G. Lancien and V. Zizler, The non-linear geometry of Banach spaces after Nigel Kalton, Rocky Mountain Journal of Mathematics 44 (2014), 1529–1583.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    G. Godefroy and N. Lerner, Some natural subspaces and quotient spaces of L1, Advances in Operator Theory 3 (2018), 61–74.MathSciNetzbMATHGoogle Scholar
  13. [13]
    G. Godefroy and N. Ozawa, Free Banach spaces and the approximation properties, Proceedings of the American Mathematical Society 142 (2014), 1681–1687.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    P. Hájek, G. Lancien and E. Pernecká, Approximation and Schur properties for Lipschitz free spaces over compact metric spaces, Bulletin of the Belgian Mathematical Society. Simon Stevin 23 (2016), 63–72.MathSciNetzbMATHGoogle Scholar
  15. [15]
    P. Hájek and E. Pernecká, On Schauder bases in Lipschitz-free spaces, Journal of Mathematical Analysis and Applications 416 (2014), 629–646.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    P. Harmand, D. Werner and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Mathematics, Vol. 1547, Springer-Verlag, Berlin, 1993.CrossRefzbMATHGoogle Scholar
  17. [17]
    F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, Journal of Multivariate Analysis 7 (1977), 149–182.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    F. John, Extremum problems with inequalities as subsidiary conditions, in Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience, New York, 1948, pp. 187–204.Google Scholar
  19. [19]
    P. L. Kaufmann, Products of Lipschitz-free spaces and applications, Studia Mathematica 226 (2015), 213–227.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    G. Lancien and E. Pernecká, Approximation properties and Schauder decompositions in Lipschitz-free spaces, Journal of Functional Analysis 264 (2013), 2323–2334.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    J. Malý, Non-absolutely convergent integrals with respect to distributions, Annali di Matematica Pura ed Applicata 193 (2014), 1457–1484.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Naor and G. Schechtman, Planar earthmover is not in L1, SIAM Journal on Computing 37 (2007), 804–826.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    E. Pernecká and R. J. Smith, The metric approximation property and Lipschitz-free spaces over subsets ofN, Journal of Approximation Theory 199 (2015), 29–44.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    H. Pfitzner, L-embedded Banach spaces and measure topology, Israel Journal of Mathematics 205 (2015), 421–451.MathSciNetGoogle Scholar
  25. [25]
    W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1987.zbMATHGoogle Scholar
  26. [26]
    R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics, Springer-Verlag London, 2002.CrossRefzbMATHGoogle Scholar
  27. [27]
    N. Weaver, On the unique predual problem for Lipschitz spaces, Mathematical Proceedings of the Cambridge Philosophical Society 165 (2018), 467–473.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    K. Yosida and E. Hewitt, Finitely additive measures, Transactions of the American Mathematical Society 72 (1952), 46–66.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 2019

Authors and Affiliations

  • Marek Cúth
    • 1
  • Ondřej F. K. Kalenda
    • 1
    Email author
  • Petr Kaplický
    • 1
  1. 1.Department of Mathematical Analysis, Faculty of Mathematics and PhysicsCharles UniversityPraha 8Czech Republic

Personalised recommendations